1) PECVD
等离子体增强化学气相沉积
1.
The Effect of Repeated Ar~+ Bombardment on the Corrosion Resistance of Plasma-enhanced Chemical Vapour Deposited (PECVD) TiN Film;
循环氩离子轰击对等离子体增强化学气相沉积(PECVD)TiN膜耐腐蚀性能的影响
2.
Facet Antireflection Coatings Deposited by PECVD;
等离子体增强化学气相沉积端面减反膜的研究
3.
High Quality ZnO Thin Films Grown by PECVD from Metal Organic Zinc and Carbon Dioxide Mixture Gas Sources;
用锌金属有机源和二氧化碳等离子体增强化学气相沉积的方法制备高质量氧化锌薄膜
2) Plasma enhanced chemical vapor deposition
等离子体增强化学气相沉积
1.
Diamond-like carbon(DLC) coatings used in biomedical fields were deposited on 316L stainless steel by plasma enhanced chemical vapor deposition(PECVD),hybrid plasma source ion implantation(PSII) and PECVD respectively.
利用双放电腔微波等离子体源全方位离子注入设备,分别采用等离子体增强化学气相沉积技术、等离子体源离子注入和等离子体增强化学气相沉积复合技术两种工艺对医用316L不锈钢进行类金刚石薄膜表面改性。
2.
Bilayered films composed of hydrogenated amorphous carbon(a-C:H)and silicon(Si)were prepared on the surface of polymethylmethacrylate(PMMA)substrates using plasma enhanced chemical vapor deposition(PECVD)and magnetically sputtering deposition for the applications in the biomedical industry.
分别用磁控溅射和等离子体增强化学气相沉积方法在PMMA基底上沉积硅膜和含氢非晶碳(a-C:H)膜。
3.
This paper investigates the drift of microcrystalline silicon(μc-Si∶H) thin film properties due to the chamber\'s long-time usage in plasma enhanced chemical vapor deposition(PECVD).
考查了等离子体增强化学气相沉积(PECVD)高压制备微晶硅(μc-Si:H)薄膜过程中,系统长时间使用造成的微晶硅薄膜特性的漂移情况。
3) very-high-frequency plasma-enhanced chemical vapor deposition
超高频等离子体增强化学气相沉积
1.
Deposition of μc-Si:H films at a high rate was investigated using very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) in this paper.
采用超高频等离子体增强化学气相沉积(VHF-PECVD)技术,实现了微晶硅硅薄膜的高速沉积,并通过改变气体总流量改变气体滞留时间,考察了气体滞留时间在化学气相沉积(CVD)过程中对薄膜的生长速率以及光电特性和结构特性的影响。
4) Direct current plasma enhanced chemical vapour deposition
直流等离子体增强化学气相沉积
5) PECVD
等离子体增强化学气相沉积(PECVD)
1.
PECVD and magnetron sputtering ITO are used to fabricate LEDs with different surface structures on DBR epilayer substrates.
用传输矩阵法模拟计算了AlGaInP发光二极管(LED)不同表面结构的光学特性,用等离子体增强化学气相沉积(PECVD)或磁控溅射掺铟氧化锡(ITO)设备,在带有DBR结构的外延衬底上制备出具有不同表面层结构的LED。
6) very high frequency plasma enhanced chemical vapor deposition
甚高频等离子体增强化学气相沉积
1.
Study of space voltage distribution between large-area parallel-plate electrodes for very high frequency plasma enhanced chemical vapor deposition;
甚高频等离子体增强化学气相沉积大面积平行板电极间真空电势差分布研究
2.
In the process of the high growth rate μc-Si:H film deposited by very high frequency plasma enhanced chemical vapor deposition(VHF-PECVD),the high energy ion impinging on the growing surface could deteriorate the device performance.
在采用高压高功率的甚高频等离子体增强化学气相沉积(VHF-PECVD)技术高速沉积微晶硅(μc-Si:H)太阳电池过程中,产生的高能离子对薄膜表面的轰击作用会降低薄膜质量和破坏p型掺杂层(p层)与本征层(i层)之间的界面特性。
3.
The deposition parameters of hydrogenated microcrystalline silicon(μc-Si:H)films were optimized for two factors,the siliane concentration and total flow rate,under high deposition power density and high deposition pressure by very high frequency plasma enhanced chemical vapor deposition(VHF-PECVD).
采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术在高功率密度和高压强条件下,通过改变硅烷浓度和气体总流量对薄膜沉积参数进行了两因素优化,最终在硅烷浓度为4。
补充资料:等离子体增强化学气相沉积
等离子体增强化学气相沉积
plasma enhanced chemical vapor deposition
等离子体增强化学气相沉积plasma enhancedChemieal vapor deposition使原料气体在电场中成为等离子体状态,产生化学上非常活泼的激发态分子、原子、离子和原子团等,促进化学反应,在衬底表面上形成薄膜的技术。简称PECVD。它的基本原理是利用等离子体中电子的动能促进化学反应。这一原理在一个世纪前就已被发现,20世纪60年代才开始用于制备薄膜。 在电场的作用下,气体分子成为电离状态,通过正、负电荷之间的激烈作用形成等离子体。在低压容器中,电子由于平均自由程大而得以加速,与中性分子或原子发生碰撞。其中,弹性碰撞使气体温度升高,而非弹性碰撞则使原子和分子激发、离解及电离化,产生化学活性的离子和原子团,促进化学反应。 PECVD淀积主要包括4个过程:①电子与反应气体在等离子体中反应生成离子及自由基;②反应物质从等离子体中输运到衬底表面;③离子、自由基与衬底反应或在其表面吸附;④反应物质或反应产物在衬底上排列成薄膜。后两个过程是决定薄膜质量的主要因素。 PECVD设备主要包括放电系统、抽气系统、反应室及气体导入系统。放电系统用于产生等离子体,一般采用高频电源,频率为50kHz至2.45GHz。高频功率的祸合方式可大致分为电感祸合和电容祸合两类。 PECVD的优点是可在较低温度下成膜,热损失少,从而抑制了与衬底的反应,并可在非耐热衬底上成膜。缺点是衬底表面及薄膜易因高能粒子的轰击而造成损伤,产生缺陷。 PECVD法已广泛应用于制备非晶硅膜、氮化硅、氧化膜等钝化膜‘它也是制备高分子薄膜的重要方法,这时又被称为等离子体聚合法。(章熙康)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条