2) molecular magnetism
分子磁性
1.
In the past several decades, molecular magnetism has been developing so fast and has become a newly arisen front study realm.
近几十年来,分子磁学发展迅猛,已成为一个新兴的前沿研究领域,在本论文中,我们选取了三种分子磁性材料,对其磁学性质分别进行了研究。
2.
In the past several decades,molecular magnetism has been developing so fast and has become a newly arisen front study realm.
分子磁性理论是解释与分子磁性有关的各种物理和化学现象以及合理合成新型分子磁性材料的基础,是理论化学的一个前沿课题。
3) magnetic polymer
磁性高分子
1.
Preparation of magnetic polymer nanocomposite and application in water determination;
纳米磁性高分子复合微球的制备及在水检测中的应用
2.
The properties of a new magnetic composite which consists of rapid quenching NdFeB magnetic powder and magnetic polymer (OPM) were studied and contrasted with the one of the bonded NdFeB permanent magnet by nonmagnetic polymer, such as epoxy resin.
研究了二茂金属高分子铁磁粉(OPM)与快淬钕铁硼磁粉复合制成的一种新的粘结永磁复合材料的性能,并与非磁性高分子粘结钕铁硼的性能进行了比较。
3.
This paper is about research of hydrolysis of whey protein concentrate(WPC)with magnetic polymer immobilized trypsin.
利用氨基化磁性高分子固定化胰蛋白酶对乳清浓缩蛋白进行水解优化,得出水解条件为:底物质量浓度80 g/L,E/S为1400 U/g(底物),pH值为7。
4) molecular diamagnetism
分子抗磁性
5) molecular paramagnetism
分子顺磁性
6) magnetic polymer microspheres
磁性高分子微球
1.
Progress in the preparation and application of core-shell magnetic polymer microspheres (A review);
核壳型磁性高分子微球的制备及应用进展(综述)
2.
Using PEG as the dispersant,the core-shell composite magnetic polymer microspheres with hydroxy groups,were synthesized by dispersion copolymerization of styrene and glycol monoacrylate in the presence of magnetic oxide and characterized by X-ray diffraction,transmission electron microscope,scan electron microscope,FTIR spectroscopy etc.
用聚乙二醇作为分散剂,以苯乙烯(St)和甲基丙烯酸-2-羟基乙酯(HEMA)为共聚单体,合成了含羟基的具有核壳结构的磁性高分子微球。
3.
Recently, there have been increasing interests for the research to so-called magnetic polymer microspheres because of their various functionalities.
近年来,对于磁性高分子微球的研究作为磁性功能材料的一个重要发展方向得到了人们的广泛关注。
补充资料:磁性材料2.薄膜磁性材料
磁性材料2.薄膜磁性材料
Magnetie Materials 2.Thin Film
在一定外加磁场作用下,其反磁化畴(磁矩取向与外磁场方向相反的畴)变为圆柱形磁畴。从膜面上看,这些柱形畴好像浮着的一群圆泡,故称磁泡或叫泡踌(另见磁性材料2.昨晶态磁性材料)。在特定的电路图形、电流方向和一定磁场情况下,可做到控制材料中磁泡的产生、传翰和消失,实现信息的储存和逻辑运算的功能。磁泡的直径在微米量级(0 .5~5协m),每个磁泡的迁移率在1 .26~12.6em八s·A/m)〔 102一i03cm八s·oe)〕,因而可制成存储密度为兆位/cmZ(Mbit/cmZ)和数据处理速率为兆位/s(M肠t/s)的运算器件。磁泡器件经过近20年研究和开发,已取得广泛的实际应用。 对磁泡材料的主要要求是:(l)各向异性常数凡>粤斌,磁化强度从>外磁场强度H;(2)杂质缺陷小,2一~”~’.J泌~-一‘产’~~一~一’、~尹一~~~’J”均匀性好。目前研究得比较清楚的有铁氧体单晶薄膜和稀土一过渡金属薄膜。从制备工艺和性能稳定、器件开发等情况看,以铁氧体磁泡材料比较成熟,早期是用钙钦石型铁氧体单晶片来作磁泡材料,后为YIG单晶薄膜所取代。它是用液相外延法在Gd3Ga5OI:(简称GGO)基片上生成的单晶薄膜,其厚为微米量级。表4为稀土石榴石R3FesolZ的磁性;表5为一些磁泡材料的基本特性数值。农4稀土石抽石R.Fe‘ol,的磁性┌───────────┬────┬────┬────┬────┬────┬────┬────┬────┬─────┬────┬────┐│R │Y │Sm │EU │Gd │Tb │Dy │、Ho │Er │T】11 │Yb │Lu │├───────────┼────┼────┼────┼────┼────┼────┼────┼────┼─────┼────┼────┤│补偿温度,~p,K │ 560 │ 560 │ 570 │ 290 │ 246 │ 220 │ 136 │ 84│4
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条