1) governing equation of buckling

屈曲控制方程
2) buckling equation

屈曲方程
1.
This paper derived the buckling equation of single-step column with no drift at its upper end used for double-span or multi-span one-storey shop building.
本文推导了适用于双跨和多跨单层厂房框架的柱顶无侧移单阶柱的屈曲方程,从而得到上段柱和下段柱的计算长度系数,除列出了μ_2值的数表外,为便于应用,还给出了单阶柱下段计算长度系数的实用计算公式。
2.
Based on the three-dimensional equilibrium equations and constitutive equations of magnetoelectroelastic medium,a state equation of stability for rectangular orthotropic plate is derived and solved imposing the corresponding boundary conditions,and the numerical example of the critical stress is given to verify the deduced buckling equation.
求解状态方程并结合边界条件得到了稳定问题的屈曲方程。
3.
Based on the theoretical analysis, the general buckling equation of semi-rigid frame column is deduced.
通过理论分析,推导了具有半刚性连接框架柱的一般屈曲方程。
3) yield controlling equation

屈服控制方程
1.
The paper has obtained the yield controlling equation of the combined spherical shells with different materials based on Mohr s criterion,and has analyzed the contact pressures,stress fields, displacement fields of the shells in partial yield or complete yield state.
本文推导出Mohr屈服条件表示的套合球壳屈服控制方程,计算了不同材料套台球天在部分屈服或全屈服下相应的界面结合压强和内、外壳体的应力场、位移场。
4) buckling bifurcation equation

屈曲分支方程
1.
The new and exact buckling bifurcation equations for the circular conical shells are studied.
依据新的精确的锥壳屈曲分支方程 ,研究承受轴向压力的刚性圆顶夹支截锥壳的稳定性。
2.
By the aid of differential geometry analysis on the initial buckling of shell element, a set of new and exact buckling bifurcation equations of the spherical shells is derived.
通过球壳微元初始屈曲的微分几何分析,推导出一组新的精确的屈曲分支方程,并且应用Galerkin变分法研究铰支球壳承受环向剪切力时的整体稳定性,构造了接近分支点变形状态的屈曲模式,首次求得了从扁球壳到半球壳大范围内的扭转屈曲临界特征值,临界荷载强度和临界应力
3.
A set of new buckling bifurcation equations of conical shells is derived in application of Koiter s initial post buckling theory.
应用Koiter初始后屈曲理论推导出一组全新的锥壳屈曲分支方程,构造了铰支锥壳承受线性分布侧向外压时的屈曲模式,运用Galerkin变分法求得了全锥度分支点屈曲临界荷载,绘出了临界特征值随壳体参数变化的曲线
5) buckling formulation

屈曲基本方程
1.
By considering the nonlinear term in Hellinger-Reissner variation principle, the buckling formulation in Hamilton system is derived.
通过在Hellinger-Reissner广义势能中引入应变的非线性项,推导出了弹性力学Hamilton体系下的屈曲基本方程。
6) dynamic buckling equation

动力屈曲方程
补充资料:黎卡提方程(见线性二次型量优控制)
黎卡提方程(见线性二次型量优控制)
Riccati equation
L袱以}tongcheng黎卡提方程(Rieeati equation)次型最优控制。见线性二
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条