1) advection-dispersion

对流弥散
1.
It is found from 2-year tracing test that the 85Sr concentration distribution hascharacteristic of double peak in its ingration process and can not be described typically by the numerical modeling ofadvection-dispersion.
用单一对流弥散数值模型无法解释这一现象。
2) convective-dispersion equation

对流-弥散模型
1.
The preferential flow of heavy metals(Cu2+ and Zn2+)was evaluated by equilibrium and non-equilibrium convective-dispersion equation(CDE).
运用平衡和非平衡对流-弥散模型对溴离子和铜、锌离子在不同土柱中的穿透曲线进行拟合。
3) Convection-dispersion equation

对流-弥散方程
1.
At last,the convection-dispersion equations were approximately normalized and the approximate solutions of the equations were gotten.
并借助于摄动矩的理论,求出了随机微分方程质点位移的均值与方差,之后将对流-弥散方程进行正态近似,得到了方程的近似解。
4) convective diffuse model

对流弥散模型
1.
A new method for determinig desalinization index was provided by convective diffuse model of soil solute motion.
应用土壤溶质运移的对流弥散模型,提出确定脱盐系数的新方法。
5) advection-dispersion equation

对流弥散方程
1.
Numerical simulations for the source coefficient inversion in an advection-dispersion equation with random noisy data;
随机扰动条件下对流弥散方程源项系数反演的数值模拟
6) advection-dispersion equation

对流-弥散方程
1.
In this paper,we discuss two kinds of the time-space fractional advection-dispersion equations.
考虑两类时间空间分数阶对流-弥散方程,它们是由传统的对流-弥散方程推广而来(时间一阶导数用μ∈(0,1]阶Caputo导数代替,空间一阶、二阶导数分别用α∈(0,1]和β∈(1,2]阶Riesz或Caputo导数代替)。
补充资料:表观弥散系数
表观弥散系数
磁共振成像术语。磁共振弥散成像中应用的参数之一。ADC为代表使用与不使用弥散梯度时兴趣区信号强度的比值,可用下式计算:ADC=(InS2-InS1)/ΔbS1为使用弥散梯度时兴趣区的信号强度,S2为不使用弥散梯度时兴趣区的信号强度,Δb为使用与不使用弥散敏化梯度时b值的差。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条