1) turbulent kinetic energy profiles

湍动动能分布
2) turbulentkinetic energy distribution

湍动能分布
3) distribution of turbulent intensity

湍动度分布
4) Turbulence Kinetic Energy

湍动能
1.
At the centre of the section near the top of burners,its rising velocity is minimum,its turbulence kinetic energy is maximum,and its temperature is maximum too.
结果表明 ,大空间锅炉炉膛的速度场、温度场分布很不均匀 ;燃烧器上部附近的炉膛中心烟气上升速度最小 ,湍动能最大 ,温度最高 。
2.
Then the result of turbulence kinetic energy of numerical simulation near the roof in the 90° direction was present,which was used to analyse the rule of distribution of fluctuating wind pressure on the cantilever.
随后给出90°风向下贴近屋盖面上数值模拟湍动能,以此分析悬挑屋盖面上脉动风压分布规律,且用风洞实验的脉动风压均方根值结果进行验证。
3.
By performing a number of experiments on the turbulence kinetic energy of smooth plate surfaces and different V-riblet surfaces in various sizes at different wind velocities,the distributing rule of the turbulence kinetic energy over the riblet surfaces in the boundary layer is acquired.
通过对不同风速下不同尺寸V型沟槽表面及光洁平板表面边界层内湍动能的测试,对比分析了沟槽表面边界层湍动能的分布规律。
5) turbulent kinetic energy

湍动能
1.
The varying rule of vertex center depth and the distribution of turbulent kinetic energy in the mould have been studied when the structure and size of submerged entry nozzle(SEN) and processing parameters are changed.
根据湍流理论及异形坯连铸的特点 ,建立了异形坯结晶器三维流场数学模型 ,对不同条件下的流场进行了数值模拟 ,分析了水口结构和工艺参数变化时异形坯结晶器内涡心深度的变化规律及液面湍动能的分布状态。
2.
The static pressure,turbulent kinetic energy, streamlines distributions and external performance were analyzed and compared.
结合外特性预测结果、内部静压、流线和湍动能分布,讨论了低比转速消防泵性能影响因素,得出以下结论:叶片出口角和叶片数对扬程和驼峰的影响较明显,增加分流叶片后,扬程提高明显;增加合理布置的分流叶片可以提高泵的扬程和效率,改善叶轮内部流动和湍动能分布;泵体的喉部面积对性能影响非常敏感,其可以有效控制高效区范围和最高效率。
3.
In order to study the interaction between two spheres and the effect of different space on wake and turbulent kinetic energy,numerical simulations on five cases between L=2.
为了研究不同间距下并列双圆球的相互作用以及对尾涡和湍动能的影响,本文选取在L=2。
6) turbulent kinetic energy

湍流动能
1.
Average velocity and turbulent kinetic energy k distribution were obtained.

476m的六直叶涡轮桨搅拌槽内,采用粒子图像测速仪(PIV)对桨叶区的流场进行了实验研究,得到了桨叶区的平均流速和湍流动能(k)分布,采用大涡PIV方法对湍流动能耗散率(ε)分布进行了估算,计算了ε与k的相关系数。
2.
Based on the tendency equation of turbulent kinetic energy, its simplified equation including only wind shear and air stability was derived.
基于湍流动能倾向方程,推导出了其只含风切变和大气稳定度的简化方程。
3.
The distribution of Reynolds shear stress and turbulent kinetic energy was described and the correlation of these two quantities was discussed.
简述了在西北工业大学低湍流度风洞中,用热线风速仪对翼型边界层及近场尾流中雷诺正应力及切应力等的测量结果,着重讨论了雷诺切应力及湍流动能的分布规律及相关特性。
补充资料:等离子体湍动加速
等离子体的一个最重要特性是不稳定性。微小的扰动就能在等离子体中激起各种等离子体波(或称为等离子体激元)。这种等离子体的激发态通常称为等离子体湍动(见等离子体天体物理学)。湍动元(等离子体波)和荷电粒子碰撞会引起它们之间的能量交换,从而导致粒子加速,这种现象称为等离子体湍动加速。这种加速效应带有统计性质,和经典的费密加速类似。业已证明,等离子体激元和荷电粒子间的碰撞总是导致粒子平均能量的增加。对费密加速的计算表明,粒子的加速率正比于L-1,L是两激元之间的平均距离,也就是两湍动元之间的平均尺度。这种关系是普遍的,并不取决于具体的加速机制。因而湍动元尺度越小,加速效率就越高。在等离子体中,存在各种高频等离子体波,它们的波长是短的,所以,加速效率就比费密加速效率大得多。计算表明,如果太阳缓变射电是由等离子体中的电子振荡波(朗缪尔波)转化来的,那么,这种电子波就能在一天之内把足够多的粒子加速到具有相当于一个耀斑爆发的能量。可见,这种湍动加速效率是非常高的。等离子体湍动加速通常包括两种情况:如果等离子体波的相速度大于粒子的热运动速度,那么,这种等离子体波只能加速少数快粒子,这叫作等离子体纯粹加速;如果波的相速度小于被加速粒子的热运动速度,那么,大多数粒子都能被这种等离子体波加速,这叫作等离子体湍动加热。
对于活动星系核、类星体、脉冲星、蟹状星云等,不管它们的辐射机制如何,为了得到和观测资料一致的结果,总得假定它们的高能粒子数随能量的分布是采取幂指数形式的。正是考虑到等离子体湍动加速效应,才有可能自洽地获得粒子的这种幂律谱。
参考书目
V.N.Tsytovich, Theory of Turbulent Plasma,Consullants Bureau,New York,1977.
对于活动星系核、类星体、脉冲星、蟹状星云等,不管它们的辐射机制如何,为了得到和观测资料一致的结果,总得假定它们的高能粒子数随能量的分布是采取幂指数形式的。正是考虑到等离子体湍动加速效应,才有可能自洽地获得粒子的这种幂律谱。
参考书目
V.N.Tsytovich, Theory of Turbulent Plasma,Consullants Bureau,New York,1977.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条