1) Density operator foimalism
密度算符时间演化
2) time evolution operator
时间演化算符
1.
The time evolution operators have been used to investigate the coherence of time-dependent optical field.
本文利用时间演化算符讨论了含时耦合光场的相干性。
2.
The method of constructing the time evolution operators of the system is given also.
同时也给出了系统时间演化算符的构造方
3) unitary time-evolution operator
幺正时间演化算符
4) time-evolution operator
时间演化算符方法
1.
By means of time-evolution operator,we have studied the emission spectrum of a Λ-type three-level atom interacting resonantly with two-mode entangled coherent-states cavity fields.
采用时间演化算符方法,研究Λ-型三能级原子与纠缠相干态光场共振相互作用的辐射谱。
5) distance between density operators
密度算符间距
1.
The properties of state evolution of the atom,field,and atom-field system in the system of two two-level atoms inside a phase-damping cavity interaction with a coherent field under the condition of large detuning are investigated by using the distance between density operators.
在大失谐条件下,运用密度算符间距研究了一位于相位损耗腔中两个二能级原子与相干光场相互作用系统中原子、光场及系统各量子态随时间的演化规律。
2.
The time evolution of distance between density operators in degenerate Raman two- photon coupling system inside a phase-damping are investigated .
研究了位于相位损耗腔中简并双光子拉曼耦合系统中密度算符的时间演化,讨论了相位损耗和光场平均光子数对密度算符间距的影响。
6) evolution operator
演化算符
1.
The time evolution operator of the quantum state is obtained.
利用量子不变量理论,讨论了交流电流源作用下介观LC电路系统动力学的演化,得到描述系统量子态随时间的演化算符。
2.
By means of an average method between two coherents, the evolution operator of a squeezed Hamiltonian system has been given.
采用相干态平均方法求出压缩哈密顿系统的演化算符,并用正规乘积内的积分方法计算它的Feynman转移矩阵阵元。
3.
Based on the generalized linear quantum transformation theory,we present a new method to solve the time-dependent quantum oscillator,and give the formulae to exactly determine the evolution operator,evolution matrix element and wave function.
在广义线性量子变换理论基础上 ,提出了一种求解含时量子振子的新方法 ,给出了严格确定演化算符、演化矩阵元和波函数的公
补充资料:Γ算符
分子式:
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条