1) Cayley graph

Cayley图
1.
Edge-Hamilton property of Cayley graph of order p~3;

p~3阶Cayley图的边Hamilton性
2.
The l-edge-connectivity of the 3-regular Cayley graph;

3-正则Cayley图的l-边-连通度
3.
Some Hamiltonian Cayley Graphs;

几类Cayley图的Hamilton性
2) cayley graphs

Cayley图
1.
On ColAut_S (G)-vertex-transitive Cayley graphs of semigroups;

半群Cayley图的保色点传递性
2.
Restricted edge connectivity of Cayley graphs with Quasiminiaml Cayley set;

具有拟极小Cayley集的Cayley图的限制性边连通度
3.
Hamiltonian factorization of 2~n P~m degrees Cayley graphs

2~np~m阶群上Cayley图的Hamilton圈分解
3) Cayley graph

Cayley 图
4) Cayley digraph

Cayley有向图
1.
Furhter investigation on strong connectivity of Cayley digraph

Cayley有向图强连通度的进一步研究
2.
The two methods of finding the directed Hamilton cirle of a Cayley digraph of a finite group were given.
给出了求有限群Cayley有向图的有向Hamilton圈的两种方法,并给出了阶为23P的群的Cayley有向图的有向Hamilton圈。
3.
In this paper,it is proved that a connected Cayley digraph X=Cay(G,S) of order 4p(p prime) with valency 2 is non-normal if and only if X≌-(2p),Aut(X)≌Z-2 wr Z-(2p),and either G=Z-(4p)=〈e〉,S={e,e~(2p+1)} or G=Z-(2p)×Z-2=〈e〉×〈f〉,S={e,ef}.
证明了4p(p素数)阶群上2度连通Cayley有向图X=Cay(G,S)非正规的充分必要条件是X≌C2p[2K1],Aut(X)≌Z2wrZ2p,且G=Z4p=〈e〉,S={e,e2p+1}或G=Z2p×Z2=〈e〉×〈f〉,S={e,ef}。
5) normal Cayley graph

正规Cayley图
1.
In this paper we classify the 4-valent, one-regular and normal Cayley graphs of dihedral groups D2n with vertex-stabilizer Z22.
本文对二面体群D2n以Z22 为点稳定子的4度正规Cayley图进行了分类。
6) Bi-Cayley graph

双Cayley图
1.
Hamiltonian property of the bi-cayley graphs

双Cayley图的Hamilton性
2.
For a finite group G and its subset S,the Bi-Cayley graph BCay(G,S) of G with respect to S is defined as a bipartite graph with the vertex set G×{0,1} and the edge set{{(g,0),(sg,1)}|g∈G,s∈S}.
设G是一个有限群,S是G的一个子集,则群G关于S的双Cayley图BCay(G,S)是指顶点集为G×{0,1},边集为{{(g,0),(sg,1)}g∈G,s∈S}的二部图。
3.
We call this kind of graph X Bi-Cayley graph.

人们在研究中发现了一类具有下列性质的二部图,即图X的全自同构群Aut(X)包含一个在X的二部划分上作用分别正则的子群,这类二部图称为双Cayley图(Bi-Cayley graph)。
补充资料:Cayley代数
Cayley代数
Cayley algebra
Cayley代数【Oyky.妙腼;E、砚别.浦如} Cay勿数((石yleynumbe巧)的代数
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条