1) 4-strong tournaments

4-强连通竞赛图
2) stong tounaments

强连通竞赛图
3) Strong Tournament

强连图竞赛图
4) 4-connected graph

4连通图
1.
In this paper by ananlyzing the properties of edge-vertex cut end we show that in a 4-connected graph G with minimum degree at least five or girth at least four,there are at least two removable edges in a spanning tree of G;in a 4-connected graph G with minimum degree at least five,there are at least two removable edges outsi.
利用边点割端片的性质给出某些4连通图中在特定子图上可去边的分布情况,得到了最小度至少为5或围长至少为4的4连通图中在其生成树上存在至少两条可去边;同时也得到了最小度至少为5的4连通图中在其生成树外存在至少两条可去边。
5) strongly connected graph

强连通图
1.
This paper gives necessary and sufficient conditions of strongly connected graphs and primitive graphs through degree sequences.
本文通过度序列分别给出一个图是强连通图和本原图的充要条件。
6) Quasi Strongly Connected Graphic

拟强连通图
补充资料:竞赛图
竞赛图
tournament
竞赛图ltour旧n长”t;叨p“P] 无自环的定向图(脚ph,orlented),且每一对顶点之间恰有一个方向的弧连接它们.n个顶点的竞赛图,可视为在没有平局的情况下刀个选手比赛的结果.竞赛图的概念被用于对n个对象用两两比较的方法进行排序.因此,它在生物学、社会学等领域有用. 一个竞赛图,如果它的顶点能用1,…,n进行标号,使得顶点v,到v,有弧,当且仅当i>j,则这个竞赛图称为传递的(tlansitive).传递的竞赛图不含回路.一个竞赛图,如果对任意有序对。‘”户都存在自。,到。J的有向路,则称它是强的(strong).竞赛图的一个弧集称为相容的(comPatible),如果这些弧及弧关联的顶点所构成的子图里不含回路.按竞赛图“胜者”的定义,相容集的最大基数是相容性的度量.每一个竞赛图包含一个基数不小于(n“/4)(1+口(l))的相容弧集.相容性的另一度量是n个点竞赛图的传递k顶点子竟赛图个数与强k顶点子竞赛图个数的比.n个点竞赛图的强k顶点子竞赛图的最大个数等于 (幼一(‘”丫’/2),若·、撒 /。\kf/n/2\/(。一2)/2\ 又k 22走\kh/、k一1/’ 若n为偶数. 一个竞赛图是强的,当且仅当它有一个生成回路(Harr口ton回路).班个顶点的每个强竞赛图有一个长为k的回路,k=3,…,n每一个竞赛图有一条生成路(HaJ的nton路). n个顶点的竞赛图的出度d‘满足方程 .凰d子一‘酥(n一”!)‘·假设一组整数(d,,…,d,)满足条件O毛dl城…毛d。蕊”一1,那么存在一个竞赛图其出度为d,,…,d。,当且仅当对任意k=1,…,打一1有不等式 豁‘)且生于业·且当k二陀时等式成立.进而,一个竞赛图是强的,当且仅当对k
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条