1) monthly runoff time series

月径流时间序列
1.
Chaos analysis of the monthly runoff time series in Jinsha River,China;

金沙江流域月径流时间序列的混沌分析
2) runoff time series

径流时间序列
1.
Research on prediction of runoff time series based on SVM——Case study of runoff of Linjiacun gauging station on the Weihe river at Baoji city;
基于混沌支持向量机的径流时间序列预测研究——以渭河宝鸡林家村站径流序列为例
2.
It is often difficult to calculate the best embedding dimension for the real runoff time series when the theoretical methods are used,so the authors used the combined prediction in multi-dimension embedding phase spaces to improve the chaotic prediction of runoff time series.
针对理论混沌参数计算方法很难得到实际径流时间序列的最佳嵌入维数,采用多嵌入维数组合预测对径流时间序列预测方法进行改进。
3.
The local forecasting method based on the chaos dynamics is studied with the runoff time series of many rivers as examples.
以多条河流的径流时间序列为例详细分析了基于混沌动力学的局部预测方法,并与全局方法和基于随机理论的AR(p) 模型等预测方法进行了对比,结果表明,局部预测方法往往优于其他预测方法。
3) daily runoff time series

日径流时间序列
5) runoff time series

径流量时间序列
6) monthly runoff series

月径流序列
1.
Based on the reconstruction of the chaotic dynamic space,the correlation dimension method and Lyapunov exponent method are applied to identify the chaos of monthly runoff series.
通过江桥站和丰满水库实际月径流序列的预测结果表明,月径流序列中存在着一定的混沌特征。
2.
It takes the ideal hydrology time series as the simulation foundation,the monthly runoff series of Heshui Reservoir and the abrupt change points of elimination cycle ingredient monthly runoff series counted by Heuristic segmentation algorithm to indicate the method is feasible and superior for studying the abrupt change of hydrological time series.
以理想的水文时间序列为仿真基础,结合合水水库的月径流序列,采用启发式分割算法得出去除周期成分后的月径流序列的突变点,以此证明了启发式分割算法检测水文时间序列突变的可行性和优越性。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条