1) power transmission tower-cable system
输电塔-导线体系
1.
Response of power transmission tower-cable system subjected to near-fault ground motions;
近断层地震动作用下输电塔-导线体系反应分析
2.
Based on the established model of the power transmission tower-cable system,the seismic response of which is analyzed with time history method.
基于所建立的输电塔-导线体系空间有限元模型,利用非线性时程分析法研究了体系在行波输入下纵向地震反应特性,并和一致地震动输入下的反应情况进行比较。
2) transmission tower-line system
输电塔线体系
1.
Dynamic behavior and stability of transmission tower-line system under wind (rain) forces;
输电塔线体系的风(雨)致振动响应与稳定性研究
2.
The dynamic model and analytical method for analyzing transmission tower-line system incorporated with MR dampers are provided for in-plane/out-of-plane vibration.
研究了输电塔线体系基于磁流变(MR)阻尼器的风致振动控制问题。
3.
The wind-induced vibration control of transmission tower-line system is carried out in this study.
研究了输电塔线体系基于摩擦阻尼器的风致振动控制问题。
3) transmission line system
输电塔线体系
1.
Advances in research of wind-induced vibration of long-span high-voltage transmission line system;
大跨越高压输电塔线体系风致振动的研究与进展
4) transmission system
输电塔线体系
1.
EHV transmission system consisting of long span transmission lines and towers is an integrity as a structure,in the process of design,the strength calculation of the conductor and the tower is independent,it is difficult to compute the longitudinal unbalanced tension of the tower.
输电塔线体系中铁塔的纵向不平衡张力是危害输电线路安全稳定运行的重要因素之一。
2.
Being the vital lifeline system, the destruction of transmission system is destroyed will lead to the damage of power system, which cause fire disaster and property loss.
输电塔线体系在使用过程中,比较多的情况是承受自然风、环境脉动和地震等动力荷载。
3.
Based on finite element analysis method,this paper establish whole element model of 500kv jiangcheng line 1625#~1627#transmission system,which used the beam element and the cable element.
本文基于有限元分析方法应用梁单元和索单元对500千伏江城线1625#~1627#塔线体系结构建立整体单元模型,考虑风荷栽和低温荷载对输电塔线体系结构覆冰厚度的影响,进行了有限元分析,计算出该塔线体系的极限覆冰厚度并分析输电塔倒塌破坏的原因,同时指出了输电线路中的薄弱点,对输电塔有效除冰提出建议。
5) transmission tower-line system
输电塔-线体系
1.
In this paper,the freezing-rain-ice and wind loads on the transmission tower-line system are simulated with consideration of the model of freezing-rain-ice and the rain classification according to the theory of fluid induced vibration.
依据流体诱发振动原理,结合已有覆冰计算模型,考虑降雨的分类,模拟了输电塔-线体系不同高度导线的覆冰和风荷载。
2.
Considering the influences of height difference,ice increasing,asymmetrical distribution of ice on conductors and wind load,nonlinear buckling analysis of transmission tower-line system under ice load and wind load was carried out.
以湖南地区挂靖线220kV输电线路覆冰倒塔为例,按原工程资料建立精细化输电塔-线体系有限元模型。
6) transmission tower-line system
输电塔–线体系
补充资料:输电线路导线截面选择
输电线路导线截面选择
selection of conductor cross-section of transmission line
但由于超高压输电线路导线的表面电场强度均控制在电晕临界电场强度的80%以上,接近于电晕临界电场强度,而新架设导线表面的局部污损又导致导线电晕临界电压降低,故运行初期和在雨天情况下仍难免出现电晕。相导线上产生电晕放电时,要伴随着产生连续重复性的电流脉冲,这些电流脉冲产生频率为0.15~100 MHz的振荡电磁波,致使在电晕导线上产生高频电磁辐射,从而在导线周围形成一高频电场,对无线电收音机和发射天线产生干扰。同时这种振荡电磁波还沿导线传播,干扰高频通道的正常工作. 由电晕导线产生的无线电干扰电平L-20 19(EZ/E,),dB。其中EZ为测点电场强度,拌V/m;E,为参考电场强度,拌V/m。工程上取E,一1拌V/m为基准,故L~20 lgEZ。若EZ~El~1拜V/m,则测点的无线电干扰电平为零。 从高压、超高压架空输电线路下测得的无线电干扰电平L(dB)随频率f(MH:)的增大而减弱,其关系曲线称为频谱特性,如图2所示。由频谱特性看出,频率在0.15~1.0 MH:范围内的干扰电平最大;雨天的干扰电平是各种气候中最大的。另外,随着海拔高度的增大,相对空气密度减小,干扰电平也增大。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条