1) adjacent vertex distinguishing total chromatic number

邻点可区别全色数
1.
In this paper,we obtain the adjacent vertex distinguishing total chromatic number of P_m∨S_n.
对一个正常的全染色满足相邻点的点及其关联边染色的色集不同时,称为邻点可区别全染色,其所用最少染色数称为邻点可区别全色数。
2.
The minimum such that has a-adjacent-vertex-distinguishing total coloring is called the adjacent vertex distinguishing total chromatic number.
这样的k中最小者称为G的邻点可区别全色数。
3.
, The adjacent vertex distinguishing total chromatic number of have been given in this paper.
对一个正常的全染色满足相邻点的点及其关联边染色的色集不同时,称为邻点可区别全染色,其所用最少染色数称为邻点可区别全色数。
2) adjacent vertex-distinguishing total chromatic number

邻点可区别全色数
1.
The minimum number of colors required for an adjacent vertex-distinguishing total coloring of a simple graph G is called the adjacent vertex-distinguishing total chromatic number,denoted by xat(G).
若一个正常全染色其相邻顶点的色集不同时,就称之为邻点可区别全染色,邻点可区别全染色所用颜色的最小数称为邻点可区别全色数。
2.
The adjacent vertex-distinguishing total chromatic number of the complete r-partite graph wit.
采用上述思路研究了等完全r-部图的邻点可区别全染色,利用图分解的方法给出了每部有2个点的完全r-部图的邻点可区别全色数;并给出了每部有偶数个点的等完全r-部图的邻点可区别全色数。
3.
Supposing C_m=u_1u_2…u_mu_1,V(C_m·F_n)=V(C_m)∪mi=1{v_(ij)|j=1,2,…,n},E(C_m·F_n)=E(C_m)∪mi=1{u_iv_(ij)|j=1,2,…,n}∪mi=1{v_(i(j+1))v_(ij)|j=1,2,…,n-1},we get the adjacent vertex-distinguishing total chromatic number of C_m·F_n.
Fn的邻点可区别全色数。
3) adjacent-vertex-distinguishing total chromatic number

邻点可区别全色数
1.
On the adjacent-vertex-distinguishing total chromatic number of rK_2 V K_3;

关于图rK_2∨K_s的邻点可区别全色数
2.
The adjacent-vertex-distinguishing total chromatic numbers on cyclic graphs are given in the form of the elements of first row(0,1,0,1,0,…,0) and(0,1,0,0,1,0,…,0) in two classes of adja.
给出了两类邻接矩阵的第一行分别为(0,1,0,1,0,…,0)和(0,1,0,0,1,0,…,0)的循环图的邻点可区别全色数。
3.
The adjacent-vertex-distinguishing total chromatic numbers of 2-connected outer plane graphs with△(G)≤4 are given in this paper.
得到了最大度不超过4的2-连通外平面图的邻点可区别全色数。
4) vertex-edge adjacent vertex-distinguishing total coloring

点边邻点可区别全色数
1.
f is a mapping from V(G)∪E(G) to {1,2,…,k},then it is called the vertex-edge adjacent vertex-distinguishing total coloring of G if uv∈E(G),f(u)≠f(uv),f(v)≠f(uv),uv∈E(G),C(u)≠C(v),and the minimum number of k is called the vertex-edge adjacent vertex-distinguishing total chromatic number of G,where C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的点边邻点可区别全染色,且称最小的数k为图G的点边邻点可区别全色数。
5) adjacent strong total chromatic number of graphs

邻点可区别的全染色数
6) adjacent-vertex strongly-distinguishing total coloring

邻点强可区别全色数
补充资料:思北邻韩二翁西邻因庵主南邻章老秀才
【诗文】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条