1)  self-complementary graph
					 
	
					
				
				 
	
					
				自补图
				1.
					In this paper,we studied the problem of L(2,1)-labeling on self-complementary graphs and proved that λ(G)≤2Δ for self-complementary graphs.
						
						研究自补图G的L(2,1)-标号问题,证明了自补图的L(2,1)-标号数满足λ(G)≤2Δ。
					2.
					The(edge) covering number and (edge) independence number of the self-complementary graph are discussed.
						
						主要讨论了自补图的边独立数和边覆盖数,给出了点独立数的严格上、下界: ,其中 是 的点色数,分析并证明了点独立数取得上、下界的自补图的存在性。
					
					2)  self complementary graph
					 
	
					
				
				 
	
					
				自补图
				1.
					The properties of self complementary graphs were studied.
					 
					
						
						 
					
						研究了自补图 Gp 的一些性质 ,提出新的算法 ,得到 3个对角 Ramsey数的新下界 :R( 17,17)≥ 8917,R( 18,18)≥ 110 0 5,R( 19,19)≥ 1788
					
					3)  self-complementary
					 
	
					
				
				 
	
					
				自补图
				1.
					In this paper, we get the diameter of three kind of self-complementary and then give a necessary and sufficient condition from matrix adjacency when the diameter is 2 or 3.
						
						本文给出了三种类型的自补图关于直径方面的结果,并从自补图的邻接矩阵给出了自补图直径为2或3的一个充要条件。
					
					4)  self-complementary 2-multigraphs
					 
	
					
				
				 
	
					
				2-重自补图
				1.
					In the paper,the connectivity and diameters of self-complementary 2-multigraphs and self-complementary digraphs are discussed,and if these graphs get disrupted,the relations for the number of edges and vertices between the two connected components are also studied by self-complementary permutation.
						
						本文讨论了2-重自补图和有向自补图的连通性以及2-重自补图的直径,同时以自补置换作为工具研究了当2-重自补图或有向自补图被分成两个连通分支后,这两个连通分支之间的边数与顶点数之间的关系。
					
					5)  selfcomplementary digraph
					 
	
					
				
				 
	
					
				有向自补图
				1.
					Construction of selfcomplementary digraphs (Ⅱ);
					 
					
						
						 
					
						关于有向自补图的构造(Ⅱ)
					
					6)  labeled self-complementary graph
					 
	
					
				
				 
	
					
				标定自补图
				1.
					The enumeration of labeled self-complementary graphs is a well--knownunsolved problem in LABELED ENUMBERATION THEORY.
						
						标定自补图的计数问题是“组合计数”理论中的著名难题,至今毫无进展。
					补充资料:自调自净自度
		【自调自净自度】
(术语)同自调项。
		
		(术语)同自调项。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
	参考词条