1) inverted pendulum

倒立单摆
1.
This paper introduces an adaptive practical output tracking control algorithm for inverted pendulum which is a nonlinearly parameterized system with unmodeled dynamics.
本文介绍带有未建模动态的倒立单摆非线性模型的全局自适应实际跟踪输出控制器的设计。
2) single inverted pendulum

单级倒立摆
1.
A simulation analysis of two control methods for a single inverted pendulum;

单级倒立摆的两种控制方法的仿真研究
2.
Application of Fuzzy Control in Single Inverted Pendulum System;

单级倒立摆系统中模糊控制理论的应用
3.
The mathematical model of a single inverted pendulum is built by using the Newton mechanics,and the two control methods which are usually used in the inverted pendulum system,that is conventional PID, the self-training property of neural net Fuzzy control are discussed.
运用牛顿动力学方法对单级倒立摆系统进行了数学建模,并对基于经典控制理论的PID控制法、基于自适应神经网络模糊控制方法进行了仿真对比分析研究。
3) single-inverted pendulum

单级倒立摆
1.
Based on the T-S fuzzy model of the single-inverted pendulum,a design method of fuzzy controller is presented by using the concept of CDF(compensation and division for fuzzy model) and the approach of linear matrix inequality.
基于单级倒立摆这一非线性系统的T-S模糊模型,提出了一种采用模糊模型相除补偿技术和LMI技术相结合的模糊控制器设计方法,并在MATLAB/Simulink上进行了仿真试验。
2.
This paper deduces the mathematical model of a single-inverted pendulum system by Lagrange equation and designs its controller by the adaptive fuzzy method, later, combining its model and controller in Matlab simulation and operating it.
根据Lagrange方程建立了单级倒立摆系统的数学模型,利用模糊自适应控制算法设计了倒立摆系统的控制器,并在Matlab的仿真模块中将倒立摆系统的数学模型和控制器结合起来,对倒立摆控制系统进行了仿真研究。
4) single inverted pendulum system

单级倒立摆系统
1.
Firstly, the simplified model of the single inverted pendulum system is analyzed, and then designed a digital optimal controller with integral function.
通过对单级倒立摆系统的简化模型分析,设计了带有积分环节的数字最优控制器。
5) Inversed Pendulum system

倒立单摆系统
6) inverted pendulum

倒立摆
1.
Control system of tVwo-wheel mobile inverted pendulum based on CANopen protocol;

基于CANopen协议的双轮移动倒立摆控制系统
2.
Double inverted pendulum control based on fuzzy inference of support vector machines;

基于支持向量机模糊推理的二级倒立摆控制
补充资料:单摆
单摆 simple pendulum 质点振动系统的一种,是最简单的摆。绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关。但若把尺寸很小的质块悬于一端固定的长度为 l且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所成角度小于5°,放手后质块往复振动,可视为质点的振动,其周期T只和l和当地的重力加速度g有关,即 ![]() |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条