1) complete response
全响应
1.
The responses of this tentative process include three kinds: zero input response, zero state response and complete response.
在一阶电路中,由于含有动态元件,因此当电路换路后,就有一个暂态过程,其响应分为三种情况:零输入响应,规律为f(0+)e-tτ;零状态响应,规律为:非状态量为f(∞)+[fS(0+)-f(∞)]e-tτ,状态量为f(∞)(1-e-tτ);全响应规律为f(∞)+{[fS(0+)+fD(0+)]-f(∞)}e-tτ。
2.
In this paper the computation of complete response of first-order circuit with constant excitation is discussed in detail.
详细讨论了一阶电路在恒定激励作用下的全响应计算。
2) full response
全响应
1.
A new method for solving full response of first-order circuit under arbitrary excitation
一种求解任意信号激励下一阶电路全响应的新方法
2.
The three-element method for the first order circuit in textbooks and references has some (weaknesses:) by using it the full response for the first order circuit under arbitrary excitation can not be solved.
目前教材及相关文献介绍的一阶电路三要素法具有局限性,不能用其直接求出任意激励下的一阶电路全响应。
3.
Applies diagonal matrix method to make a state transition matrixz φ(t), which may resolve the full response value of the controlled source dynamic state ciruit.
应用对角矩阵法求出状态转移矩阵(t),再通过状态转移矩阵(t)求含受控源动态电路的全响应。
3) global response
全球响应
4) complete response
完全响应
1.
By converting initial-state into excitation in time domain,the complete response and zero-input response may also be calculated using convolution operation.
本文通过在时域下将系统初始状态转换为激励信号,从而使得利用卷积运算不仅能够计算零状态响应而且可以求解完全响应和零输入响应。
2.
Lu Ying and his colleagues have considered both the total response and the complete response,and proposed a new practical design,which provides more and/or better choices for clinical trials.
陆盈等人提出了一种新的试验方案,同时考察总的响应和完全响应两个变量,他们的试验设计为II期临床试验提供了更多更好的选择。
3.
The image function of complete response is derived directly from s domain 0 - system model,then the complete response is worked out on the basis of inverse Laplance transform.
利用s 域0 - 系统,直接得出完全响应的象函数,取其拉普拉斯逆变换得到解析解,依据初值定理确定了耦合互感电路的初始
6) the whole response surface
全局响应面
1.
The study of the whole response surface method for structural reliability analysis;
结构可靠度分析的全局响应面法研究
补充资料:全响应
全响应
complete response
q口。n州ongyl门g全响应(eomplete response)线性电路或系统在激励作用下产生的零状态响应与零输入响应之和。它是电路或系统在输人和起始条件共同作用下的响应。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条