2) cable-stayed bridge
斜拉桥;斜张桥
3) Jinan Huanghe River Cable-stayed Bridge
济南黄河斜张桥
4) skew bridge
斜桥
1.
Analysis of live load effect about widened skew bridge engineering;
斜桥拓宽后的活荷载效应分析
2.
However, considerable difficulties with design and construction of skew frame bridges still exist at present because the complete theory for skew bridge calculation and analysis has not been formed.
铁路斜交框架立交桥是铁路跨越公路时采用的一种桥梁形式,然而由于斜桥计算尚未形成完整的理论体系,这给铁路斜交框架立交桥的设计与施工带来很大的困难,实际当中与正交桥相比,此类桥梁更容易出现顶板开裂问题。
5) skew bridge
斜交桥,斜桥
6) diagonal cable bridge tower
斜拉桥桥塔
1.
Analysis of slackening shake stability of a single post style diagonal cable bridge tower;
某单柱式斜拉桥桥塔的驰振稳定性分析
补充资料:斜张桥
也称斜拉桥。用锚在塔上的多根斜向钢缆索吊住主梁的桥。斜张桥是第二次世界大战以后新发展起来的重要桥型之一,因主梁为缆索多点悬吊,内力小,建筑高度低,施工方便,跨越能力大,现跨度已建到465米(加拿大安纳西斯岛桥,计划1986年竣工)。可用于公路桥、铁路桥、城市桥、人行桥以及管道桥等。
构造 斜张桥的主要组成部分有缆索、塔柱、桥墩、桥台、主梁和辅助墩等(图1a)。
缆索 用以悬吊主梁,将其上荷载传递给塔柱与桥墩(合称塔墩)。索形布置主要有三种:①辐射形(图1a)。联邦德国、法国称为扇形。斜索吊点集中在塔顶,这种布置最省钢索,更适用于用缆索悬吊主梁于塔上的悬浮体系。②竖琴形(图1b)。斜索皆平行布置宛如竖琴,故名。用钢量多,但较美观。③折中形(图1c)。英国、美国称为扇形。系辐射形与竖琴形的折中形式,用钢量居中。
塔柱 为桥墩以上支承缆索的结构,可用钢筋混凝土或钢材建成。塔柱与桥墩的连接方式有三种:①塔柱与桥墩固结。简称塔墩固结(图2a、b、c)。这种结构整体稳定性好,主梁支点反力小,施工方便,但墩底受弯矩很大。②塔柱与桥墩分开。塔柱与主梁固结,而与桥墩分开,简称塔梁固结(图2e),可克服墩底弯矩过大的缺点,但主梁中间支点反力很大,要求特大吨位的桥梁支座,引起构造上的困难。③塔柱与桥墩铰接。简称塔墩铰接。也能减小墩底弯矩,但构造与施工均麻烦,整体稳定性也差,甚少采用。
顺桥轴方向塔柱的立面形式,常用的为柱形或A字形。而横桥方向的形式甚多,有双柱形、门形、倒V形、菱形与独柱形等(图2)。
塔柱形式与索面布置有关。例如双柱形、门形用于设置在主梁两侧的双平行索面;倒V形、菱形用于双倾斜索面;独柱形则用于沿桥中线设置的单索面。
双柱形与门形塔柱施工方便;倒V形施工麻烦,基础面积大,但对抗风稳定性好;菱形可减小基础面积;独柱形外形轻巧,但主梁必须选用抗扭刚度大的箱形截面。
主梁 直接支承桥面并锚固斜缆索。其结构形式主要有:①连续梁(图3a)。整体性好,抗风、抗震能力强,刚度大,行车舒适。在预应力混凝土梁中要受徐变与收缩产生附加力的影响,但可用半悬浮体系予以大大减小。②带挂孔的单悬臂梁(图3b)。结构外部是静定的,适用于软土地基,可以消减混凝土的徐变收缩影响,但结构刚度差。缆索受力大于连续梁,挠度大,不利于高速行车。③T型刚构(图3c)。除可利用悬臂拼装(灌筑)法施工(见桥梁施工)外,其优点同单悬臂梁,缺点是墩内弯矩大。三种结构形式中,以采用连续梁较多。在双跨独塔式斜张桥中,均采用连续梁。
主梁的横截面形式,主要有三种:①箱形截面(图4a)。因系闭合式截面,抗扭刚度甚大,尤适用于单面索的独柱式斜张桥。②半封闭式三角箱形截面(图4b)。两侧具有流线型的三角形箱梁,有很好的抗风稳定性。③槽形截面(图4c)。桥梁建筑高度(见桥梁)低,有利于争取桥下净空高度,降低引线或引桥标高。
辅助墩 设于边孔内的桥墩,用以减小跨中挠度,提高全桥刚度,并可改善边孔主梁的受力,当边孔梁底离地面不高时,宜增设辅助墩。
分类 按主梁材料分 有钢斜张桥、混凝土斜张桥和两者结合的结合梁斜张桥。钢斜张桥主梁较轻,跨越能力大,施工方便,但用钢量大,养护费用高,造价偏高。混凝土斜张桥反之,且具有刚度大,抗振性能好,噪声小等优点,采用较多。用钢筋混凝土桥面板的结合梁(见实腹梁桥)做斜张桥,用钢不多,噪声小,可减轻重量,在大跨度桥中有较大竞争力。
按桥塔设置分 有多塔(含双塔)斜张桥与独塔斜张桥。前者用于多跨,后者用于双跨,当桥位处无设置高引桥的必要时,以选用独塔斜张桥为好,可以减少工程费用,对结构受力与抗震均有利。
按索面形式分 有双平行索面斜张桥(图2a、 b)、双倾斜索面斜张桥(图2c、 d)与单索面斜张桥(图2e)。双平行索面斜张桥的缆索,在两个铅垂平面中布置,是最常用的一种。双倾斜索面斜张桥,缆索布置在两个倾斜面内,具有良好的抗风稳定性,适用于大跨度。单索面斜张桥的缆索只布置在一个铅垂直面,适用于公路桥与城市桥。单双索面配合的斜张桥,其主跨用单索面,而边跨用双斜索面,使独柱塔三面受力,非常稳定,可减小独柱尺寸,以利行车。
按主梁支承形式分 有刚性铰式支承斜张桥与悬浮体系斜张桥。前者在主梁支点处设支座,在塔梁结合体系中,全部反力直接传给墩台;而在塔墩结合体系中,部分反力由支座传给墩台,部分反力由斜索传至塔顶,通过塔柱传给塔墩,反力分配可由支座顶得松紧而定。后者梁在塔墩上不设支座,而是用缆索悬挂在塔上,支点反力通过塔柱传给桥墩。这种体系对消减混凝土徐变和抗震都有利,并可减小主梁支点处的内力,但为保证施工时稳定性好,须加设临时支座。
设计特点 主要须满足抗风与抗震的要求以及控制全桥的变形。为此,首先强调主孔的跨、宽比不大于20,最好不大于15;其次是主梁的宽、高比要大于 8、至少要大于 7并加风嘴(见悬索桥),相应的索距要减小到10米以下(为了配合施工往往取5~6米)。此外,用双倾斜索面比用双平行索面的抗风稳定性好,可以抵抗对主梁不利的扭转振动。
在多塔斜张桥中,如采用预应力混凝土连续梁结构,因混凝土徐变收缩,则在主梁的无索区要产生拉力与弯矩,须采取措施克服。在独塔斜张桥中,因主梁可自由伸缩,不产生这一问题。而在多塔斜张桥中,则宜在主梁合龙前用对顶法消减甚至于预储徐变收缩量。
斜张桥的斜缆索存在一定的垂度,随索力的大小而变化,从而影响整个结构的受力与变形。在跨度大或索力变化幅度大时影响较大,须用精密的计算方法和电子计算机分析结构受力。对一般情况,则可用钢索的修正弹性模量(简单考虑缆索垂度影响的弹性模量)求解。锚固缆索用的锚具易疲劳破坏,宜选用具有高疲劳强度的锚具。在设计中还需考虑防止缆索锈蚀的措施。
外国斜张桥 公路钢斜张桥 首先建成的是瑞典的斯特伦松德(Strmsund)桥,1955年建成,主跨182.6米。当今最大跨度为 404米的法国圣纳泽尔桥,1975年建成,其特点为边孔带一段中孔的悬臂全部浮运顶升就位,塔墩则在顶升钢梁过程中逐步筑高;中孔中部分段拼装,用导流器解决了风振问题。独塔斜张桥的最大跨度为联邦德国的杜塞尔多夫-弗莱赫(Düsseldorf-Flehe)桥,1978年建成,主跨367.25米,其特点为边孔采用预应力混凝土和主孔用钢的混合体系。(见彩图)
铁路钢斜张桥 最大跨度为南斯拉夫的萨瓦桥,1980年建成,主跨254米,索距达50米,钢梁太轻,要靠加道碴压重,才能避免疲劳破坏的危险。
公路混凝土斜张桥 1962年首先在委内瑞拉建成的马拉开波桥,主跨5×235米,开创了这种桥的先例。创纪录的是1983年建成的西班牙卢纳桥,主跨达440米,其特点为梁高仅2.5米,跨、高比为176,宽、高比为9,边跨长度仅及主跨的24.3%。著名的法国布罗托讷(Brotonne)桥,1977年建成,主跨320米,其特点为采用独柱式塔、单面索,用悬拼与悬浇混合法施工的三向预应力混凝土箱形梁。美国帕斯科-肯纳威克桥,1978年建成,主跨299米,其特点为采用悬浮体系和重达270吨的全断面预制梁段。(见彩图)
铁路混凝土斜张桥 最大跨度为主跨148.23米的联邦德国美因二号桥,其特点为铁路、公路与管道三用的独塔斜张桥,缆索采用迪维达格式粗钢筋组成,张拉简单精确,锚固可靠。
中国斜张桥 1975年首次在四川建成云阳桥,分跨为34.91+75.84+34.91米。其后蓬勃发展,现建成10余座,均为预应力混凝土斜张桥。其中公路桥最大跨度为主跨220米的济南黄河斜张桥;铁路桥最大跨度为主跨96米的广西来宾红水河桥,是现今亚洲的创纪录者;1977年建成的台湾省淡水桥,分跨为67+134+134+67米。(见彩图)
参考书目
小沃尔特·波多尔奈等著,李延直等译:《斜拉桥设计与施工》,中国建筑工业出版社,北京,1980。(W.Podolny,Jr,et al,Construction and Desiɡn of Cable-Stayed Bridɡe,John Wiley & Sons,New York,1976.)
M.S.特罗伊茨基著,王学俊等译,程庆国总校:《斜拉桥理论与设计》,中国铁道出版社,北京,1980。(M.S.Troitsky,CableStayed Bridɡes Theory and Desiɡn,Crosby Lockwood Staples,London,1977.)
构造 斜张桥的主要组成部分有缆索、塔柱、桥墩、桥台、主梁和辅助墩等(图1a)。
缆索 用以悬吊主梁,将其上荷载传递给塔柱与桥墩(合称塔墩)。索形布置主要有三种:①辐射形(图1a)。联邦德国、法国称为扇形。斜索吊点集中在塔顶,这种布置最省钢索,更适用于用缆索悬吊主梁于塔上的悬浮体系。②竖琴形(图1b)。斜索皆平行布置宛如竖琴,故名。用钢量多,但较美观。③折中形(图1c)。英国、美国称为扇形。系辐射形与竖琴形的折中形式,用钢量居中。
塔柱 为桥墩以上支承缆索的结构,可用钢筋混凝土或钢材建成。塔柱与桥墩的连接方式有三种:①塔柱与桥墩固结。简称塔墩固结(图2a、b、c)。这种结构整体稳定性好,主梁支点反力小,施工方便,但墩底受弯矩很大。②塔柱与桥墩分开。塔柱与主梁固结,而与桥墩分开,简称塔梁固结(图2e),可克服墩底弯矩过大的缺点,但主梁中间支点反力很大,要求特大吨位的桥梁支座,引起构造上的困难。③塔柱与桥墩铰接。简称塔墩铰接。也能减小墩底弯矩,但构造与施工均麻烦,整体稳定性也差,甚少采用。
顺桥轴方向塔柱的立面形式,常用的为柱形或A字形。而横桥方向的形式甚多,有双柱形、门形、倒V形、菱形与独柱形等(图2)。
塔柱形式与索面布置有关。例如双柱形、门形用于设置在主梁两侧的双平行索面;倒V形、菱形用于双倾斜索面;独柱形则用于沿桥中线设置的单索面。
双柱形与门形塔柱施工方便;倒V形施工麻烦,基础面积大,但对抗风稳定性好;菱形可减小基础面积;独柱形外形轻巧,但主梁必须选用抗扭刚度大的箱形截面。
主梁 直接支承桥面并锚固斜缆索。其结构形式主要有:①连续梁(图3a)。整体性好,抗风、抗震能力强,刚度大,行车舒适。在预应力混凝土梁中要受徐变与收缩产生附加力的影响,但可用半悬浮体系予以大大减小。②带挂孔的单悬臂梁(图3b)。结构外部是静定的,适用于软土地基,可以消减混凝土的徐变收缩影响,但结构刚度差。缆索受力大于连续梁,挠度大,不利于高速行车。③T型刚构(图3c)。除可利用悬臂拼装(灌筑)法施工(见桥梁施工)外,其优点同单悬臂梁,缺点是墩内弯矩大。三种结构形式中,以采用连续梁较多。在双跨独塔式斜张桥中,均采用连续梁。
主梁的横截面形式,主要有三种:①箱形截面(图4a)。因系闭合式截面,抗扭刚度甚大,尤适用于单面索的独柱式斜张桥。②半封闭式三角箱形截面(图4b)。两侧具有流线型的三角形箱梁,有很好的抗风稳定性。③槽形截面(图4c)。桥梁建筑高度(见桥梁)低,有利于争取桥下净空高度,降低引线或引桥标高。
辅助墩 设于边孔内的桥墩,用以减小跨中挠度,提高全桥刚度,并可改善边孔主梁的受力,当边孔梁底离地面不高时,宜增设辅助墩。
分类 按主梁材料分 有钢斜张桥、混凝土斜张桥和两者结合的结合梁斜张桥。钢斜张桥主梁较轻,跨越能力大,施工方便,但用钢量大,养护费用高,造价偏高。混凝土斜张桥反之,且具有刚度大,抗振性能好,噪声小等优点,采用较多。用钢筋混凝土桥面板的结合梁(见实腹梁桥)做斜张桥,用钢不多,噪声小,可减轻重量,在大跨度桥中有较大竞争力。
按桥塔设置分 有多塔(含双塔)斜张桥与独塔斜张桥。前者用于多跨,后者用于双跨,当桥位处无设置高引桥的必要时,以选用独塔斜张桥为好,可以减少工程费用,对结构受力与抗震均有利。
按索面形式分 有双平行索面斜张桥(图2a、 b)、双倾斜索面斜张桥(图2c、 d)与单索面斜张桥(图2e)。双平行索面斜张桥的缆索,在两个铅垂平面中布置,是最常用的一种。双倾斜索面斜张桥,缆索布置在两个倾斜面内,具有良好的抗风稳定性,适用于大跨度。单索面斜张桥的缆索只布置在一个铅垂直面,适用于公路桥与城市桥。单双索面配合的斜张桥,其主跨用单索面,而边跨用双斜索面,使独柱塔三面受力,非常稳定,可减小独柱尺寸,以利行车。
按主梁支承形式分 有刚性铰式支承斜张桥与悬浮体系斜张桥。前者在主梁支点处设支座,在塔梁结合体系中,全部反力直接传给墩台;而在塔墩结合体系中,部分反力由支座传给墩台,部分反力由斜索传至塔顶,通过塔柱传给塔墩,反力分配可由支座顶得松紧而定。后者梁在塔墩上不设支座,而是用缆索悬挂在塔上,支点反力通过塔柱传给桥墩。这种体系对消减混凝土徐变和抗震都有利,并可减小主梁支点处的内力,但为保证施工时稳定性好,须加设临时支座。
设计特点 主要须满足抗风与抗震的要求以及控制全桥的变形。为此,首先强调主孔的跨、宽比不大于20,最好不大于15;其次是主梁的宽、高比要大于 8、至少要大于 7并加风嘴(见悬索桥),相应的索距要减小到10米以下(为了配合施工往往取5~6米)。此外,用双倾斜索面比用双平行索面的抗风稳定性好,可以抵抗对主梁不利的扭转振动。
在多塔斜张桥中,如采用预应力混凝土连续梁结构,因混凝土徐变收缩,则在主梁的无索区要产生拉力与弯矩,须采取措施克服。在独塔斜张桥中,因主梁可自由伸缩,不产生这一问题。而在多塔斜张桥中,则宜在主梁合龙前用对顶法消减甚至于预储徐变收缩量。
斜张桥的斜缆索存在一定的垂度,随索力的大小而变化,从而影响整个结构的受力与变形。在跨度大或索力变化幅度大时影响较大,须用精密的计算方法和电子计算机分析结构受力。对一般情况,则可用钢索的修正弹性模量(简单考虑缆索垂度影响的弹性模量)求解。锚固缆索用的锚具易疲劳破坏,宜选用具有高疲劳强度的锚具。在设计中还需考虑防止缆索锈蚀的措施。
外国斜张桥 公路钢斜张桥 首先建成的是瑞典的斯特伦松德(Strmsund)桥,1955年建成,主跨182.6米。当今最大跨度为 404米的法国圣纳泽尔桥,1975年建成,其特点为边孔带一段中孔的悬臂全部浮运顶升就位,塔墩则在顶升钢梁过程中逐步筑高;中孔中部分段拼装,用导流器解决了风振问题。独塔斜张桥的最大跨度为联邦德国的杜塞尔多夫-弗莱赫(Düsseldorf-Flehe)桥,1978年建成,主跨367.25米,其特点为边孔采用预应力混凝土和主孔用钢的混合体系。(见彩图)
铁路钢斜张桥 最大跨度为南斯拉夫的萨瓦桥,1980年建成,主跨254米,索距达50米,钢梁太轻,要靠加道碴压重,才能避免疲劳破坏的危险。
公路混凝土斜张桥 1962年首先在委内瑞拉建成的马拉开波桥,主跨5×235米,开创了这种桥的先例。创纪录的是1983年建成的西班牙卢纳桥,主跨达440米,其特点为梁高仅2.5米,跨、高比为176,宽、高比为9,边跨长度仅及主跨的24.3%。著名的法国布罗托讷(Brotonne)桥,1977年建成,主跨320米,其特点为采用独柱式塔、单面索,用悬拼与悬浇混合法施工的三向预应力混凝土箱形梁。美国帕斯科-肯纳威克桥,1978年建成,主跨299米,其特点为采用悬浮体系和重达270吨的全断面预制梁段。(见彩图)
铁路混凝土斜张桥 最大跨度为主跨148.23米的联邦德国美因二号桥,其特点为铁路、公路与管道三用的独塔斜张桥,缆索采用迪维达格式粗钢筋组成,张拉简单精确,锚固可靠。
中国斜张桥 1975年首次在四川建成云阳桥,分跨为34.91+75.84+34.91米。其后蓬勃发展,现建成10余座,均为预应力混凝土斜张桥。其中公路桥最大跨度为主跨220米的济南黄河斜张桥;铁路桥最大跨度为主跨96米的广西来宾红水河桥,是现今亚洲的创纪录者;1977年建成的台湾省淡水桥,分跨为67+134+134+67米。(见彩图)
参考书目
小沃尔特·波多尔奈等著,李延直等译:《斜拉桥设计与施工》,中国建筑工业出版社,北京,1980。(W.Podolny,Jr,et al,Construction and Desiɡn of Cable-Stayed Bridɡe,John Wiley & Sons,New York,1976.)
M.S.特罗伊茨基著,王学俊等译,程庆国总校:《斜拉桥理论与设计》,中国铁道出版社,北京,1980。(M.S.Troitsky,CableStayed Bridɡes Theory and Desiɡn,Crosby Lockwood Staples,London,1977.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条