说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Laplace-Hankel变换
1)  Laplace-Hankel transform
Laplace-Hankel变换
1.
The actual solutions can be acquired by inverting the Laplace-Hankel transform.
将这个传递矩阵关系应用于多层地基的每一层,并结合多层地基的连续条件、边界条件以及抽水作用面的连续条件,求得了饱和层状地基的抽水问题在Laplace-Hankel变换域内的解答。
2)  Laplace Hankel mixed transforms
LaplaceHankel变换
3)  Hankel-Laplace integral transform
Hankel-Laplace联合变换
1.
By employing two state variables, the governing consolidation equations are reduced to a set of equivalent partial differential equations which can be solved by means of Hankel-Laplace integral transform technique.
利用Hankel-Laplace联合变换对其进行求解 ,获得饱和土骨架位移、应力、孔隙水压力及渗流量的一般积分形式解 ,由此分析横观各向同性半空间饱和地基受荷载作用的固结性状。
4)  Laplace transform and Hankel transform
Laplace和Hankel积分变换
5)  Hankel transform
Hankel变换
1.
Numerical solutions for Hankel transform and application;
Hankel变换的数值积分及其应用
2.
Analytical solutions were obtained in a radial flow domain using generalized Hankel transform.
利用广义Hankel变换求得了径向流动的解析解,由于解析解是无穷级数,无法得到具体的值。
3.
The analytical solutions of temperature increment,stress,displacement and pore pressure are derived with the forward and the inverse Hankel transform.
求解过程引用Hankel变换技术,得到了热力源作用下土体中温度增量、应力、位移和孔隙水压力的积分形式解答。
6)  Hankel integral transform
Hankel变换
1.
Therefore, after Biot putting forward the general wave equations in isotropic saturated porous medium, there are a series of work on dynamic response in such medium by the FEM, BEM(in frequency space or Laplace space), as well as analytical method(completed by Fourier expanding and Hankel integral transforma.
然后基于径向Hankel变换,建立问题的状态方程;求解状态方程后,得到传递矩阵。
2.
Then, by means of the method of Laplace integral transform, Fourier expanding and Hankel integral transform, the governing equations is solved in the Laplace-Hankel transforming region.
通过Laplace变换 ,建立了各向同性弹性饱和土在圆柱坐标系下 ,基于Laplace变换域内的Biot非轴对称波动方程 ;利用方位角的Fourier变换和径向Hankel变换 ,将波动方程转化为一组二阶常微分方程组 ;求解波动方程后 ,得到有限层厚的饱和地基的位移和应力通解 ;进而结合饱和地基的边界条件和排水条件 ,求解了任意竖向力作用下 ,饱和半空间地基的动力响应问
补充资料:Laplace变换


Laplace变换
Laplace transform

Ij户沈变换[u内倪加份七丽;几叨月aCa即eO6Pa30-aan“e] 广义地它是形如 F(,)一丁f(:)。一d:(1) L的LaplaCe积分(LaPhce inte脚1),这里积分是在复z平面的某一围道L上进行的,它在定义在L上的函数f(:)和复变数p=叮+i;的解析函数F(p)之间建立了一个对应关系.很多形如(l)式的积分由P,Uplace作了考察(见汇11). 狭义地,Up玩。变换理解为单侧助p廊e变换(one一sid刻UPlaceu艺nsfonn) F‘p,一L If,‘,,一丁f(亡)。一d。,‘2, 0这样称呼是为了区别于双侧LaPlace变换(t场。一sjded肠p俪etra璐form) F(,)一L of](,)一丁f(:)。一d:·(,)LaP玩。变换是一类特殊的积分变换(泊魄刘trans-form);(2)式或(3)式的变换与F以州er变换(Fo~tl习J侣允加)有紧密联系.双侧Lap玩e变换(3)可以看成函数f(Oe一“的凡~变换,而单侧Lap阮e变换(2)可以看成当OJ。时收敛而当ReP=叮<叮。时发散;这数a。称为(条件)收敛横坐标(a比c姚a of(conditional)coll祀理户Ice);2)积分(2)对所有的p都收敛,在这种情形下,令。。“一刃;3)积分(2)对所有的p发散,在这种情形下,令6。二+①.如果口。<+的,则积分(2)表示一个在收敛半平面(half·plane of con代rg-ence) Rep>。。内的单值解析函数F(p).通常限于考虑绝对收敛的积分(2).使得积分 J}f(,)}。一““‘ 0存在的那些6的最大下界称为绝对收敛横坐标(a比cl-ssaofa比。1吹。01】Ve醚笋nce)a。,,。簇叮。.如果a是使得}f(:)}=O(e“‘)(:一‘的)的那些口的下确界,则。。“a;数a有时称为f(t)的增长指数(j。山洗of growth) 在一定的附加条件下,f(t)能由它的UPlace变换F(p)唯一地重新得到.例如,如果f(t)在t。的某邻域中有界变差或如果f(0分段光滑,则Up咏e变换的反演公式(~ionform“巨forthe助P」ace七2贺允rm) 夕,、、_f(r。+O)+f(r。一O) f(t。)二止‘之‘止二一~‘二二一-‘二三=(4、 2 口+于R =钾一俪fF(,)e“‘’dp,叮>“。 2二i户必。硬‘,成立. 公式(2)和(4)使得有可能得到施加在象原和变换上的运算之间的很多关系式,也能得到经常遇到的象原的变换表.所有这些组成了算子演算(。详功-tio耐cakul璐)的初等部分. 在数学物理中,多维肠p阮e变换 F(,)一丁f(:)e一‘,,!,、:(5) C+有重要应用,这里t二(:,,…,t。)是、维E孤lid空间R”的点,夕=(夕,,…,尸。)“a+i;二(,:,‘’‘,,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条