1) structural boundedness

结构有界
1.
In this paper, an algorithm is given to decide the structural liveness and structural boundedness of extended strong asymmetric choice (ESAC) nets.
给出了关于扩展强化非对称选择网(extended strong asymmetric choice nets,简称ESAC网)结构活和结构有界的一个判定算法。
2.
Then the liveness monotonicity for extended strong AC nets is proved and a necessary and sufficient condition for structural liveness and structural boundedness of extended strong AC nets is given in the co.
同时也证明了扩展强化非对称选择网活性的单调性 ,并给出其结构活和结构有界的充分必要条件 。
2) Structural boundedness

结构有界性
1.
After that,a theorem to determine the structural boundedness of Petri nets is proved with the modified Farkas Lemma in ring of integers.
之后,利用整数环上的Farkas引理证明了一个有关Petri网结构有界性的判定定理。
3) bounded t-structure

有界t-结构
1.
The heart of the bounded t-structure of triangulated categories is studied in this paper.

研究三角范畴有界t-结构的心。
4) disordered structure with bounds

有界无序结构
5) totally bounded pointwise uniformity

全有界点式一致结构
6) fuzzy totally bounded quasi u-niformity

模糊全有界拟一致结构
补充资料:发光地寄色界无色界天乘
【发光地寄色界无色界天乘】
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条