1) submetacompactness

次亚紧
2) strongly submetacompact

强次亚紧
1.
This paper first prove an inverse limit theorem of strongly submetacompact spaces; By using this, two Tychonoff product theorems of infinit factor spaces are obtained; Finally, it is proved that the equalentness on strongly submetacompact spaces and submetacompact spaces is proved.
首先证明了强次亚紧空间的一个逆极限定理;然后,利用此逆极限定理导出了强次亚紧空间的具有无限个乘积因子的两个Tychonoff乘积定理;最后,证明了遗传强次亚紧性和遗传次亚紧性是等价的。
3) nearly submetacompact

几乎次亚紧
1.
We define the nearly submetacompact space and give a characterization of it.

定义了几乎次亚紧空间 ,给出了它的一个刻画 ,并证明了几乎次亚紧、可数紧T3 空间是紧空
4) orthocompact

次亚紧空间
1.
オetacompact space and submetacompact space are especially studied in the classes of orthocompact space and suborthocompact space,two representing theorems are gained;a theorem of Junnila is generalized,a characterization of submetacompact space is gained.
从正紧空间与次正紧空间的角度讨论了亚紧空间与次亚紧空间,得到了亚紧空间与次亚紧空间的两个表示定理;推广了Junnila的一个定理,得到了次亚紧空间的一个刻划。
5) hereditarily submetacompact

遗传次亚紧
1.
The author mainly obtained the following two theorems: (1)Let X=σ{x α:α∈A},if every finite subproduct of X is strong submetacompact, then X is strong submetacompact; (2) Let X=σ{x α:α∈A}, if every finite subproduct of X is heredifarily submetacompact and X normal, then X is hereditarily submetacompact.
主要获得如下两个定理:(1)设X=σ{Xα:α∈A},如果X的每个有限子积是强次亚紧的,则X是强次亚紧的;(2)设X=σ{Xα:α∈A},如果X的每个有限子积是遗传次亚紧的且X正规,则X是遗传次亚紧的。
2.
In this paper,we show the result:A space X is a hereditarily submetacompact space if and only if every scattered partition of X has a θ-sequence of open expansions.
本文获得如下结果:(*)X是遗传次亚紧空间当且仅当X的每个散射分解有个开的θ-膨胀序列。
6) Countably submetacompact maps

可数次亚紧映射
补充资料:-[次甲基-三(亚苯氧基亚甲基)]三(环氧乙烷)
CAS:66072-38-6
分子式:C28H28O6
中文名称:2,2',2"-[次甲基-三(亚苯氧基亚甲基)]三(环氧乙烷)
英文名称:2,2',2''-[methylidyne tris(phenyleneoxymethylene)]tris-oxirane
triphenylolmethane triglycidyl ether
分子式:C28H28O6
中文名称:2,2',2"-[次甲基-三(亚苯氧基亚甲基)]三(环氧乙烷)
英文名称:2,2',2''-[methylidyne tris(phenyleneoxymethylene)]tris-oxirane
triphenylolmethane triglycidyl ether
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条