说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三维简谐振子
1)  three-dimension harmonic oscillator
三维简谐振子
2)  vibration time-space curves
三维简谐振动
3)  three dimensional harmonic oscillator
三维谐振子
1.
The approximate solution and the exact solution of three dimensional harmonic oscillator in potential H′=(λμω_0~2/2)(x~2+y~2+z~2);
三维谐振子在H′=(λμω_0~2/2)(x~2+y~2+z~2)下能级的近似解和精确解
2.
The B2 proportional term in the Hamiltonian of three dimensional harmonic oscillator in the uniform magnetic field is considered,and calculated the perturbaion matrix elements.
在考虑均匀磁场中三维各向同性谐振子哈密顿量中B2项影响的情况下,计算了均匀磁场中三维谐振子n=5能级的微扰矩阵元和一级能量修正值,并讨论了其能级简并度的解除。
3.
The article studies a simple method for any energy level of three dimensional harmonic oscillator in uniform magnetic field.
研究了任意能级下均匀磁场中三维谐振子一级能量修正值的简便方法。
4)  harmonic oscillator
简谐振子
1.
Squeezing of even and odd generalized coherent states of non-harmonic oscillator in a finite-dimensional Hilbert space;
有限维希尔伯特空间非简谐振子奇偶广义相干态的压缩效应
2.
Discussion on rotating trap of two-dimensional harmonic oscillator
二维旋转简谐振子势的讨论
3.
The principle of operation and design of the harmonic oscillator was introduced and the factors influencing the etching quality of the harmonic oscillator were analyzed in detail.
介绍了MOEMS加速度地震检波器中敏感元件——简谐振子的工作和设计原理,并详细讨论了影响简谐振子腐蚀质量的因素。
5)  non-harmonic oscillator
非简谐振子
1.
Even and odd generalized qs-coherent states of non-harmonic oscillator and their quantum statistics properties;
qs变形非简谐振子奇偶广义相干态及其量子统计特性
2.
Nonclassical properties of superposition of eigenstates of the higher powers of annihilation operator of a non-harmonic oscillator;
非简谐振子湮没算符高次幂本征态的叠加态非经典性质
3.
The solution of the energy of non-harmonic oscillator by coherent state;
用相干态计算非简谐振子的能量修正值
6)  anharmonic vibrator
非简谐振子
1.
The energy change principle of anharmonic vibrator with the aviation of outer force is discussed.
讨论了缓慢变化外力作用下非简谐振子的能量随外力的变化规律,在此基础上研究了固体的热弹性效应。
补充资料:简谐振动(harmonicvibration)
【简谐振动】(harmonicvibration)振动的一种形式。一个作直线振动的质点,如果取其平衡位置为原点,取其运动轨道沿`x`轴,那么当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数时:`x=Acos((2\pi)/Tt \phi)`,这一直线振动便是简谐振动。式中`A`表示质点离开平衡位置时`(x=0)`的最大位移绝对值,称“振辐”,`T`是简谐振动的周期,`((2\pi)/Tt \phi)`角称为简谐振动
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条