1) Stuart-Landau system

Stuart-Landau系统
2) Stuart-Landau equation

Stuart-Landau方程
3) Landau system

Landau系统
1.
Four kinds of raising and lowering operators of the Landau system;

Landau系统四类规范不变的升降算符
2.
Phase eigenstates for the Landau system (planar charged particle moving in a uniform magnetic field) are built.
引入Landau系统 (带电粒子在垂直于均匀磁场平面内的运动 )的相位本征态 ,利用这些本征态可方便地描述带电粒子圆周运动 ,且所得结果与规范的选择无
4) Gin/burg-Landau system

Ginzburg-Landau系统
5) Landau system

Landau体系
1.
Calculation of transition probability of Landau system due to light by time-dependent pertubation theory;
用含时微扰理论计算Landau体系的光致跃迁概率
2.
The fact that when computing transition of Landau system due to light,the integration variable of computing matrix element x_(m,k),y_(m,k) isn t dτ=dxdydp but dτ=dxdy is indicated,and that the matrix element y_(m,k) should be expressed as y_(mp_(y),kp~(0)_(y)) is also indicated,and the transition selection principle of Landau system due to light is revised.
指出在计算Landau体系的光致跃迁概率时,计算矩阵元xm,k,ym,k的积分变量应是dτ=dxdy,,而不是dτ=dxdydpy,同时还指出,应将矩阵元ym,k表示为ympy,kp
3.
Under the cylindrically symmtric gauge center coherent states of the Landau system (planar charged particle moving in a uniform magnetic field) are derived.
在对称规范下计算出Landau体系 (带电粒子在垂直于均匀磁场的平面内的运动 )的圆心相干态 。
6) Landau-Ginzburg coefficients

Landau-Ginzburg 系数
补充资料:Stuart model
分子式:
CAS号:
性质:又称比例模型(proportional model)。是一种按原子与原子间成键的共价半径成比例放大做成的分子模型。特点是比较真实,但原子间的价键却难看清。
CAS号:
性质:又称比例模型(proportional model)。是一种按原子与原子间成键的共价半径成比例放大做成的分子模型。特点是比较真实,但原子间的价键却难看清。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条