1) Hamiltonian
[英][,hæmil'təuniən] [美][,hæmḷ'tonɪən]
Hamilton量
1.
Comparison of Hamiltonian at Critical Points of a System;
一个微分系统的奇点的Hamilton量比较方法
2.
To simplify the calculations, the Hamiltonian matrix was divided into five invariant subspaces based on the projection of the total spins along the external magnetic field.
从2个量子位系统的Hamilton量出发,根据总自旋在外磁场方向的总投影分成5个不变子空间,构造它们的块对角矩阵形式。
2) Hamilton vector field
Hamilton向量场
1.
A class of perturbed cubic Z2-equivariant Hamilton vector field is discussed in this paper.
考虑一类扰动的平面三次Z2-等变Hamilton向量场,借助数值分析工具,利用平面动力系统分支理论和判定函数方法证明该向量场至少存在11个极限环,且给出这些极限环的相对位置分布。
2.
In this paper,Some properties of product poisson manifold are discussed,some formulas of Hamilton vector field are also obtained;Morover,the Concept of Poisson Group is introduced in this paper and is applied in poisson manifol
本文讨论了Poisson积流形的一些性质,得出了Hamilton向量场的若干公式;文中还引入Poisson群的概念,并给出了它在Poisson流形中的应用。
4) Hamilton vector fields
Hamilton矢量场
5) Hamilton action
Hamilton作用量
1.
The Poincaré cartan integral invariant and the Poincaré linear integral invariant of the Poincaré Chetaev system are obtained by using the formula of the asynchronous variation of Hamilton action and the Poincaré Chetaev equations.
研究Poincaré-Chetaev系统的积分不变量 ,包括Poincaré- Cartan积分不变量以及Poincaré线性积分不变量 利用Hamilton作用量的非等时变分和Poincaré-Chetaev方程来求这些积分不变量 ,得到系统的Poincaré线性积分不变量和Poincaré-Cartan积分不变量 ,并举例说明结果的应
6) Hamiltonian energy theory
Hamilton能量理论
1.
Nonlinear L_2 design for the water-gate and excitation control of hydroturbine generator based on hamiltonian energy theory;
基于Hamilton能量理论的水轮发电机水门与励磁非线性L_2控制
补充资料:Hamilton方程
Hamilton方程
Hamilton equations
H臼城恤拍方程IH翻山奴旧闰卿枷脂;raM班月盯o.a”a。-脚。al 一阶典范常微分方程组,它描述完整力学系统在外力作用下的运动和描述经典变分学中的极值问题. 由W.Ha几沮ton(【1」)建立的H助nilton方程组等价于二阶I利笋阴罗方程(力学中的)(加g甩n罗叫姗-由璐(inn篮£ha川。))(或在经典变分学中,D.肠方程(E川er闪uat幻n)),其中未知量为广义坐标q,以及互,=d风/dt·物而lton曾考虑用广义动量 刁L.,,1、 P,=一不花厂,I二l,“‘,”、1, 云奋,去代替广义速度氛,这里L(q;,氛,;)为l荆笋叫罗函数(恤脚n罗丘m以沁n),。为该系统的自由度个数,并且还定义函数 H(、,二,‘)一派各。母1一L,(2)现今称为H朋问叙旧函数(Halnjltonfr山ction)或H助吐-ton算子(Hamilto~).在(2)的右边变量吞,被表示式 吞,=职:(叮:,八,t)代替,这是由解方程组(l)得到的.对于满足 ,了护L\ det气扁乱)少笋”的动力系统,这样的解总存在. H翻心ton方程组有标准形式 d叮,_日万dPi_日H .0._、 二止二=‘二二‘‘一‘七七二一一二二‘+O艺=1.·…n dt日几’dt刁q:翻’- (3)其中Q)表示非位势的广义力,如果它们作用于该系统的话.(3)中方程的个数等于未知元q:,几的个数2”. 方程组(3)的阶为2月,它等于二阶加脚n罗方程组的阶数. 利用公式(l)与(2)将变量q‘,氛,t与la脚n罗函数L转换成变量q.,只,t与H直rr沮ton函数H是由1瘫娜触变换(玫罗ndretransform)给出的.Hamilto们方程较肠脚n邵方程有其优点,因此在分析力学中起重要作用.亦见H山川物翔系统(Han川to功ans岁记m).[补注] 【Al] Am〔〕1’d,V .1.,Matherr么tica1Tr‘thods ofcl踢ical ~。,snringer,1978(鲜俄文卜_一_ 郑维行译沉水双、际一儿仪
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条