1) DC capacitor voltage
直流侧电容电压
1.
An analytical m ethod about the DC capacitor voltage,converter rating between the hybrid power compensator and the parallel active power filter is also presented.
分析了混合型有源电力补偿技术的原理 ,提出了混合型有源补偿与常规并联有源滤波器在直流侧电容电压、装置容量等方面进行比较的分析方法。
2) DC capacitor voltage control
直流侧电容电压控制
1.
A novel active power filter control algorithm based on DC capacitor voltage control and compensation current feedback control is proposed.
提出了一种基于直流侧电容电压控制和补偿电流反馈控制的电力有源滤波器新型控制算法。
2.
A control algorithm based on DC capacitor voltage control and compensation on energy invariableness is proposed for three-phase shunt voltage APF.
针对三相并联型有源滤波器,从能量守恒角度提出一种将周期离散控制技术和数字锁相环技术应用于直流侧电容电压控制的策略。
3) DC bus capacitor
直流侧电容
1.
The principle of energy commutation among voltage-source APF(Active Power Filter),source and nonlinear load is studied,the stability of DC bus capacitor voltage is analyzed and a method maintaining the stability of DC bus capacitor voltage is presented,based on which,a control method for voltage source APFs is introduced with the deduction of its control equations.
研究了电压源型有源电力滤波器、电源及非线性负载三者之间的能量交换机理,分析了变流器直流侧电容电压的稳定问题,提出了维持直流侧电容电压稳定的新方法。
2.
The stability of the dc bus capacitor voltage is directly connected with the compensatory capability of an voltage source active power filter.
电压源型有源电力滤波器直流侧电容电压的稳定程度对补偿性能有直接的影响。
3.
Based on the research of energy commutation among APF,source and nonlinear load,this paper analyzes the stability of DC bus capacitor voltage theoretically and presents a novel simplified digital control method for voltage source single-phase active power filters.
该文研究了单相有源电力滤波器、电源及非线性负载之间能量交换机理;在此基础上对变流器直流侧电容电压的稳定问题进行了理论分析,并提出了一种简单的应用于单相电压源型有源电力滤波器的数字化控制方法。
4) dc-link capacitor
直流侧电容
1.
Based on analyzing the control strategy on dc-link capacitor voltage of unified power flow controller(UPFC), it proposed the soft control strategy on dc-link capacitor voltage and analyzed the relationship between capacitance, dc voltage and power transmitted on the line.
在分析UPFC直流侧电容电压传统控制方式的基础上,提出了直流侧电容电压弱控制策略的概念,并分析了直流侧电容容量、直流侧电压等级和线路传输功率之间的关系。
5) DC-side voltage
直流侧电压
1.
To solve the problem, a method to stabilize the DC-side voltage and two harmonic detection methods are put forward for power system containing various harmonics.
以目前有实用先例的注入式混合有源滤波器为例分析了电网中存在的非整数次谐波对混合型有源滤波器(hybrid active power filter,HAPF)的补偿性能和安全运行造成的影响,针对系统采用的谐波检测环节对非整数次谐波的不正确检测导致滤波器性能降低并致使直流侧电压波动的问题。
2.
Whether the hybrid active power filter could get desirable effects of harmonic suppression depends on the constancy of DC-side voltage besides the correct design of the main circuit.
有源滤波器能否按其工作原理实现预期的谐波抑制效果,除了主电路设计合理之外,在很大程度上还依赖于保持直流侧电压的恒定。
3.
Furthermore, rectifier is usually used to provide DC-side voltage for the existence of fundamental resonance circuit, it leads to a great fluctuation in DC-side voltage.
针对注入式混合有源滤波器中无源与有源部分补偿效果叠加、补偿谐波电流在经过注入支路和输出滤波器之后会产生一定的相位和幅值偏差,以及基波谐振支路的存在使得必须通过添加整流桥的方式获取直流侧电压从而难以保持直流侧电压的稳定等问题,提出了一种改进结构的新型谐振注入式混合型有源滤波器(hybridactivepowerfilter,HAPF),使直流侧电容能够与电网产生能量交换。
6) DC voltage
直流侧电压
1.
Control algorithm of DC voltage for a hybrid active filter applied to high voltage system;
用于高压混合有源滤波器的直流侧电压控制方法
2.
DC voltage control of cascaded inverter-based dynamic voltage restorer
级联型多电平动态电压恢复器直流侧电压控制方法
3.
Fuzzy neural network controller was designed in this paper,which was a proposal combining fuzzy control with neural network,and used the control method in DC voltage control of shunt APF.
该文设计出一种将模糊控制与神经网络控制相结合的模糊神经网络控制器FNNC,并将其应用到并联型有源电力滤波器的直流侧电压的控制中。
补充资料:电力系统电容传递过电压
电力系统电容传递过电压
capacitance-transfer overvoltage in electric power system
d旧nl}x{tong dlonronge卜uondl gt」odlonyo电力系统电容传递过电压(c叩acitance-transfer overvoltage in eleetrie power system) 当变压器的高压绕组或高压线路中出现对地零序电压,通过电容联系而传递到低压绕组或低压线路所形成的过电压。产生零序电压的原因是由于断线、断路器的不同期分合、不对称接地故障或者发生谐振现象. 绕组间的电压传递绕组间的稳态传递过电压主要在高低压绕组的中性点均不直接接地的变压器中产生。图1中变压器高压绕组的A相接地.零序电压为一对人(见图2),它在高、低压绕组间电容已2和低压绕组对地电容CZ之间进行分压,使得低压侧产生零序电压分量亡2,而 QF毙丘E日三cZ士┌─┬─┐│ │ │└─┴─┘图l变压器高压绕组A相接地 的电压传递接线图U2一E‘只一二书下叶 ’L.找十七之C一2 当低压侧开路(断路器QF分闸),对地杂散电容CZ很小,相对于低压侧的额定相电压右.、艺、和左。来说,口:可能很大,它们叠加的结果(见图3),可能一相(a相)对地电压降低而另两相电压升高,也可能三相电压同时升高(c相电压口。最高),从而危及低压绕组的绝缘。当低压侧接有电磁式电压互感器,其感抗Xd大于3/〔。(CZ+e12)〕时,会在传递回路中发生铁磁谐振,使得亡:与艺人反相(图3中的虚入图2高压侧电压相t图线),此时a相对地过电压最高。 低压绕组与发电机相连(QF闭合)后,发电机的对地电容很大,传递电压口:和相应的发电机对地电压很低。但是,当发电机的中性点接有消弧线圈(其电感为L),并与CZ全补偿而发生并联谐振时,零序电压将全部传递过来。过补偿的、<今,传递回路接~”’“”碑一、以了:”嘴~~川供近于串联谐振:欠补偿的毗>今,可能发生工频铁磁谐振。无吠了2”刁.。~一一~叭,,,“o‘“叭叮日图3低压侧电压 相t图论是产生申联谐振还是铁磁谐振,都将在二次侧产生很商的对地过电压,危及发电机绕组的绝缘。 为了避免产生传递过电压,如果断路器QF可能长时间分闸,可在变压器低压侧投人一组对地电容。在QF闭合和发电机中性点接有消弧线圈时,可以增大消弧线圈的脱谐度,以使传递电压低于容许数值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条