说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 航天复杂结构
1)  Astronautical structure
航天复杂结构
2)  space structure
航天结构
1.
Space structures consisting of thin walled beams are subjected to incident solar heat flux and emit thermal energy by radiation.
对航天结构中常见的辐射换热条件下的空间薄壁圆管结构 ,构造了一种用于非线性瞬态温度场计算的傅立叶 -有限单元。
2.
Fourier-finite element analysis of temperature fields in space structures;
针对航天结构常用的空心圆杆 ,提出了一种计算其温度场的 Fourier—有限单元法 ,沿杆长用有限元离散 ,沿周向温度分布展成三角函数。
3)  Complex spacecraft
复杂航天器
4)  complex structure
复杂结构
1.
Mode selection method of complex structure and application in connected structure;
复杂结构的模态选取方法及在连体结构中的应用
2.
Assembled-dissecting technology of complex structure for 3-D finite element analysis;
复杂结构有限元网格组合剖分技术
5)  comp licated structure
结构复杂
6)  complicated structure
复杂结构
1.
Principle and effect of critical angle of complicated structure in dynamic analysis;
复杂结构地震动输入方向的基本原理及其影响
2.
Study on Analysis and Design of Earthquake-resistant and Wind-resistant for the Large Span Complicated Structure XiaMen International Meeting Center;
大跨度复杂结构厦门国际会展中心抗震抗风设计研究
3.
A example proves that this new method solves the safety problem of complicated structure effectively.
实例证明,该法避免了有限元分析的复杂加载和长时间运算,有效地简化了复杂结构的安全性分析问题。
补充资料:航天器结构分析
      航天器主要结构的力学分析,是航天器结构设计的重要依据。在航天器结构质量比不断减小、结构刚度和固有频率有可能降低的情况下,通过动力分析正确判断在动载荷下结构的动态响应,可提高航天器的可靠性。静力分析是早期航天器结构分析的主要手段,方法成熟、简单而可靠。航天器在运行时处于长期的冷热交变环境,由此引起的热应力和热变形对某些结构部件的功能有很大影响,需要进行热应力应变分析。
  
  动力分析  首先进行与结构本身特性有关的模态分析,然后结合外载荷进行动力响应分析。①模态分析:包括结构动态特性的理论分析和试验分析。目的是确定结构的模态参数,如固有频率、阻尼、振型。这种分析采用有限元素法。在结构复杂和所划分的有限单元数目过多时,采用简缩的方法使有限元模型的自由度减少,或采用模态综合法,把结构划分为若干子结构,先求出子结构的模态,再综合为整个结构的模态。通常用试验来检查理论计算结果的精确性,并找出改进模态精度的途径,试验方法与火箭振动特性试验相似。②动力响应分析:已知结构的模态特性,在给定外载荷下进行动力响应分析,确定结构的加速度、位移和应力分布。求解的方法有直接积分法、模态叠加法和福斯法等。用动力响应的分析结果,检验结构设计的合理性,例如,过大的位移会使部件之间碰撞;过大的应力会使零件产生断裂破坏;过大的加速度容易使安装在结构上的元、器件失效。③载荷分析:确定运载火箭与航天器界面上的动态响应,属动力分析问题。早期采用的保守冲击谱法,是在飞行试验中测出运载火箭与航天器界面上的冲击谱,取其包络线作为结构载荷。而广义冲击谱法则考虑了航天器结构特性的反馈作用,使用了航天器和运载火箭的模态参数,这种方法现代应用较多。瞬态法把航天器和运载火箭的有限元模型结合在一起,对飞行过程中点火、分离、关机等重要时刻进行耦合的瞬态响应分析,可以得到比较精确的结果,但比较麻烦。
  
  静力分析  航天器大多采用薄壁结构、加劲结构、夹层结构等轻型结构,在静力分析中除了进行强度计算外,结构的稳定性和变形分析十分重要(见飞机结构力学、火箭结构分析)。根据航天器结构形状多样性的特点,多数情形需要采用有限元素法。在轻型结构分析中广泛进行优化设计,在满足强度和刚度的条件下使结构的重量达到最小。将结构的几何尺寸和材料的物理性能都作为优化设计的参数,从而扩大了结构优化设计的应用范围。
  
  热应力应变分析  再入航天器的热应力分析方法与火箭头部的热应力分析基本相同。空间轨道运行时的热应力应变分析,是航天器特有的问题。对于一些航天器结构来说热变形分析十分重要,如大型抛物面天线反射盘形状的微小温度畸变会影响天线的性能,大尺寸的可展开部件(如太阳电池翼、测量用的伸长臂等)的过大热变形会影响航天器在轨道飞行中的姿态控制。为了进行分析,先计算出结构的温度分布,确定结构材料的力学和物理性能随温度变化的关系,再分析热应力与应变。解决这种非线性问题,有时需要作某些简化假设,须靠计算机来计算。
  
  疲劳和断裂分析  绝大多数一次使用的航天器承受动载荷的时间很短,一般可不考虑疲劳与断裂。对于那些很薄的板壳构件,即使承受几分钟的振动也可能产生疲劳和断裂破坏,因此需要进行疲劳和断裂分析。
  
  

参考书目
   诸德超、王寿梅著:《结构分析中的有限元素法》,国防工业出版社,北京,1981。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条