1) Noether current

Noether流
1.
Although local gauge invariance leads to a non conservation Noether charge, the differential equation satisfied by the Noether current includes the charge conservation law of the charged field.
本文将论证如下结论 :尽管定域 U( 1 )规范不变性导致一个不守恒的 Noether荷 ,但 Noether流在形式上的守恒方程包含着带电场的电荷守恒定律。
2.
A OSP(N/4) supergravity Lagrangian with supersymmetry Noether current and internal symmetry current is constructed,the invariances of the Lagrangian under the super symmetry .
用Noether耦合方法,在求得了超对称Noether流和内对称Noether流后,引入规范场、引力微子场、Yang—Mills场及费米场之间的相互作用,构造了OS_P(N/4)超引力的拉氏量,并证明了其不变性。
2) noetherian ring

Noether环
1.
Properties of Noetherian ring;

Noether环理想的性质
2.
The quasi-finitistic dimension condition over noetherian ring was introduced and its some applications were given.
给出了维数有限性条件的一个推广,引入了准维数有限性条件并给出了Noether环上准维数有限条件的一些应用。
3.
In this paper, the concept of symbolic power of primary idea isproposed, and we give the following result:Let R be Noetherian ring with identity, Q (≠R) is a P- primary ideal of R,S = R\P, then (n) = (O)s, where the intersection is taken over all symbolic Power of primary ideal Q.
本文提出了Noether环中准素理想的符号幂的概念,同时建立了如下定理:设R是一个有单位元的Noether环,Q是R的一个异于R的P-准素理想,S=R/P,则Q的一切符号幂的交为(O)s。
3) Noether charge

Noether荷
1.
Although local gauge invariance leads to a non conservation Noether charge, the differential equation satisfied by the Noether current includes the charge conservation law of the charged field.
本文将论证如下结论 :尽管定域 U( 1 )规范不变性导致一个不守恒的 Noether荷 ,但 Noether流在形式上的守恒方程包含着带电场的电荷守恒定律。
4) Noether ring

Noether环
1.
In this paper,some new characterizations of N-semisimple rings are given,it is proved that a Noether N-semisimple ring is a semisimple ring,and Noether rings,semisimple rings,QF-rings are discribed by N-projective modules and N-injective modules.
给出了N-半单环的新特征,证明了Noether N-半单环是半单环,利用N-投射模和N-内射模刻画了Noether环、半单环和QF-环。
5) Nertherian module

Noether-模
6) Noetherian modules

Noether模
补充资料:Noether空间
Noether空间
Noetfaerian space
N‘绷心空间(N伙山曰‘l娜,Ce;班TeP000n钟e冲明e.o] 一个拓扑空间(toPOlo乡司spa此)X,其中闭子空间的任何严格下降的链都会中断.一个等价条件是:X的闭子集的任何非空族都有关于包含关系为序的极小元.N吮廿坦r空间的每个子空间本身也是NoeUrr空间.如果空间X有一个Noc吐ler子空间的有限覆盖,则X也是NoeUzer的.空间X是N吮让记r的当且仅当X的每个开子集都是拟紧的.N讼川比r空间X是有限多个不可约分支的并. N沃劝巴空间的例子是交换环的谱(见环的谱(spe-沈田m of an刀g)).对于一个环A,空间Sp戈(A)(A的谱)是Nb洲比r的当且仅当A/J是N血劝.环(N叱t比~血g),这里J是A的幕零理想.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条