1) powell method of conjugate

powell共轭方向法
2) conjugate direction method

共轭方向法
1.
The ABS algorithms are utilized in modifying the Zangwill conjugate direction method for nqnconstrained optimization problems.
构造出一种有限步收敛的求解具有线性约束的二次规划问题的共轭方向法-LAZ法。
2.
Aimed at the data that we get in chemical industry most being high dimensional,and particle swarm optimization(PSO) being easily trapped into local minima value for high dimensional function,a method conjugate direction particle swarm optimization(CDPSO),which combined conjugate direction method with PSO,is proposed to process high-dimensional data.
针对化工数据多为高维数据,而粒子群算法对求解高维优化问题易陷局部极值,提出将共轭方向法与粒子群算法相结合处理高维数据。
3.
The characteristics of the steepest descent method s small amount of computations and conjugate direction method s fast convergence combined,a conjugate vector base method for solving ill-conditioned linear equations was proposed.
结合最速下降法计算量小和共轭方向法收敛速度快的特点,提出了一种求解病态方程组的共轭向量基的方法。
3) conjugate direction algorithm

共轭方向算法
1.
In the conjugate direction algorithm, search direction is dependent onthe selection of parameter β~(k): s~(1) = g~(1), s~(k+1)=-g~(k+1)+β~(k)s~(k),k≥1.
共轭方向算法中搜索方向依赖于对参数在β~(k)的选取s~(1)=-g(1),s~(k+1)=-g~(k+1)+β~(k)s~(k),k≥1。
4) conjugate direction search method

共轭方向搜索法
5) Powell's direction acceleration method

Powell方向加速法
6) conjugate direction

共轭方向
1.
Prestack three-term inversion based on conjugate direction substitution and realization

基于共轭方向置换的叠前三参数反演方法及其实现
2.
In terms of the minimum question of a positive definite quadratic function,a set of Newton directions in minimum points derived with an accurate single dimensional search are used to produce a set of conjugate direction,and a proof of convergence is presented.
对正定二次函数极小问题,利用精确一维搜索所得极小点处的牛顿方向来生成一组共轭方向,并给出收敛性证明。
3.
A method is given for construction of conjugate and orthogonal directions using k( < n) conjugate directions.
给出了从k(
补充资料:Powell’s method Powell
分子式:
CAS号:
性质:法是在无约束优化算法之一,首先选取一组共轭方向,从某个初始点出发,求目标函数在这些方向上的极小值点,然后以该点为新的出发点,重复这一过程直到获得满意解,其优点是不必计算目标函数的梯度就可以在有限步内找到极值点。
CAS号:
性质:法是在无约束优化算法之一,首先选取一组共轭方向,从某个初始点出发,求目标函数在这些方向上的极小值点,然后以该点为新的出发点,重复这一过程直到获得满意解,其优点是不必计算目标函数的梯度就可以在有限步内找到极值点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条