说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 固支圆拱
1)  circular arch with fixed supports
固支圆拱
1.
With sufficient precision, the approximate syminetrical destabilizing critical load for the circular arch with fixed supports are calculated by Ritz method.
按Ritz法求得在垂直分布荷载go/cos2θ作用下具有足够工程精度的固支圆拱正对称失稳临界力的近似值,得到了一些可供参考的结果。
2)  fixed-end circular arches
固支圆弧拱
1.
Based on the total potential energy of elastic curved beams by considering the geometrical nonlinearity, the theoretic solution for the flexural-torsional buckling load of fixed-end circular arches subjected to uniform compression and bending is deduced with the Retz method, taking the effects of warping rigidity into account.
在给出的考虑几何非线性情况下的弹性曲梁总势能的基础上,采用里兹法导出了固支圆弧拱在均匀受压和均匀受弯作用下的弯扭屈曲荷载的理论解,推导中考虑了翘曲刚度的影响。
3)  clamped shallow arch
固支浅拱
4)  fixed arch
固支拱
1.
This paper is based on the basic equation of polar coordinate solution in elastic planar problem,derived the state equation of planar problem of fixed arch,defined the displacement and stress triangular potential function, then obtained the accurate solution.
文章依据弹性力学平面问题的极坐标解答的基本方程,推导出平面问题两端固支拱的状态方程,进而设定位移及应力三角势函数,求出其在径向均布压力作用下的解析解。
5)  clamped circular plate
固支圆板
1.
Plastic limit analysis of clamped circular plate under linear distributed load;
固支圆板在线性荷载作用下的极限解
2.
The superiority of using the generalized functions to solve mechanic problems is illustrated by an example of the bending deflection of clamped circular plate under the concentrated force,using the generalized function.
简要介绍了广义函数的发展,给出了力学中常用的广义函数(即奇异函数)的定义及其微分、积分运算法则,分析了广义函数在力学各分支中的应用现状,通过用广义函数表示集中力作用下固支圆板的面分布集度来求解板弯曲挠度的实例,说明运用广义函数解决一些力学问题的优越性。
3.
The unified solutions of load-carrying capacities, moment fields and velocity fields for clamped circular plates in plastic limit state are derived with respect to the unified strength theory proposed by Yu.
本文采用最新的统一强度理论求出了固支圆板的塑性极限荷载,内力场及速度场的统一解;得出了强度理论参数b及材料的不同拉压比a对塑性极限的影响曲线。
6)  circular arch
圆拱
1.
Dynamic buckling of cracked circular arch with initial geometric imperfection subject to radius impact;
含初缺陷损伤圆拱的动力屈曲
2.
The stability equations of circular arch are obtained by the method of functional extremum.
采用泛函极值分析方法,推导出圆拱截面函数和挠曲函数的稳定方程,并用瑞利-里兹法,近似求解静水压力作用下,无铰圆拱呈反对称屈曲和正对称屈曲状态的临界荷载及截面的优化形式。
3.
By adopting the method of functional extremum analysis, the author derives the stability equation for section function and flexure function of circular arch.
采用泛函极值分析方法,推导出圆拱截面函数和挠曲函数的稳定方程。
补充资料:窦固(见窦固攻北匈奴)


窦固(见窦固攻北匈奴)
Dou Gu

Doll GU窦固(D ouGu,?一公元88)东汉中期将领。字孟孙。扶风平陵(今陕西咸阳西北)人。名将窦融侄。历任奉车都尉、卫尉等。以率军攻北匈奴著名。见窦固攻北匈奴。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条