说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 弯矩分布函数
1)  distribution function of moment
弯矩分布函数
1.
That is to use a distribution function of moment to make a schedule.
本文运用弯矩分布函数,建议对β的取值可以采用图表的方法,使β值的求解更精确、更实用。
2)  bending moment distribution
弯矩分布
3)  distributed bending moment
分布弯矩
1.
In this paper, the reciprocal theorem is applied to research on the bending problem of rectangular plates with opposite simple supported and clamped edges under distributed bending moment and a concentrated bending moment acting at any of its points, the accurate solution of the problem are given.
应用功的互等定理研究了在分布弯矩与任一点集中弯矩共同作用下对边简支另一对边固定的矩形板的弯曲问题,给出了该问题的精确解。
4)  bending moment redistribution
弯矩重分布
5)  redistribution of bending moment
弯矩重分布
1.
The load deflection curves and the redistribution of bending moment were recorded.
完成了四片高强混凝土—钢纤维高强混凝土变截面预应力连续梁的静载试验 ,记录了四片梁的弯矩—挠度曲线及弯矩重分布过程 ,指出了弯矩重分布是与裂缝的出现和发展密切相关的 ;讨论了部分预应力比 PPR对连续梁内力重分布的影响 ;最后对四片试验梁进行了材料非线性分析。
6)  moment redistribution
弯矩重分布
1.
Based on the moment redistribution of two span reinforced concrete continuous beam with constant cross section, the calculation method of moment redistribution for partially prestressed concrete continuous beams with varying height of section along the longitudinal direction is derived.
从两跨等截面的普通钢筋混凝土连续梁的弯矩重分布出发 ,推导并提出变截面部分预应力混凝土连续梁弯矩重分布的计算方法 ,以期在以后进一步试验研究的基础上得出能用于设计的计算公
2.
The moment redistribition in externally prestressed concrete continuous beams was investigated in this paper,and the influence of secondary moment upon moment redistribution was also discussed in this paper a non-linear Strut and Tie model, which can be used to analyze the moment redistribition of externally prestressed concrete continuous beams,was presented.
探讨了无粘结部分预应力混凝土连续梁的弯矩重分布问题,涉及了弯矩重分布中预加力次力矩的影响。
3.
Most of the research on moment redistribution is based on continuous beam structures, a little on prestressed concrete frames.
预应力框架中塑性铰形成的位置不同,弯矩重分布的方向和能力也不相同。
补充资料:布朗斯台德-舒尔茨分布函数
分子式:
CAS号:

性质:高分子溶液处于两相平衡时,聚合物在浓相与稀相中的分布函数。其表达式为:式中φ2与φ21分别表示聚合物在稀相与浓相中的体积分数,x为聚合度, σ为两相分配系数,它是与溶剂在稀相与浓相的体积分数以及哈金斯参数x1,有关的参数。分布函数表明,如果降低温度或加入不良溶剂,改变x1值,使一定分子量的高分子在浓相中的体积分数明显超过在稀相中的体积分数,从而达到分级的目的。该函数对聚合物的溶解分级有指导意义。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条