1) segment of the B spline curve
分段Bezier点
2) point set Bezier cures
点集Bezier曲线
3) phased sample loading
分段点样
4) Piecewise point
分段点
1.
Discussion on the derivative of piecewise function f(x) on the piecewise point;
分段函数f(x)在分段点处的导数的求法浅探
5) multi-stage ignition
分段点火
6) point-to-point segment
点到点分段
补充资料:Bezier曲面
Bezier曲面
Bezier surface
条氏zier曲线,即为曲面片的边界曲线。Bz阵中央的四个控制点Pll,P12,处1,P22与边界曲线无关,但也影响曲面的形状。图1双三次Bezier曲面氏2 ier qumianE短zier曲面(E短zier surface)用Be~n多项式及控制点网格定义的曲面。基于E泛zier曲线,可以给出1戈zier曲面的表示式。 设Pij(i=o,1,…,n;z=0,1,…,m)为(n+1)X(m+l)个空间点列,则m xn次1头犯ier曲面定义为:s(。,二)一艺艺刀‘,二(u)Bj,,(w)户。, t二O少=O u,we[0,lj;式中B,,,(u)=几u‘(一u)m一‘, 尽,,(w)=q记(1一w)“一,是E屺nlstein基函 数。 依次用线段连接点列Pij(i=0,1,…,创j二O,1…,m)中相邻两点所形成的空间网格,称之为控制点网格。Bezier曲面的矩阵表示是s(u,w)=仁BO,,(u),Bl.二(u),…,凡,,(u)」刀月州|||.川月两陆卜|!阮P,1 Pom Pl, P,,,(w,m(, J.11n山.1…PP,,(w 0010…湘冲队尸||助 X在实际应用中n,m一般小于4。 (l)双线性Bezier曲面 当m=n=1时,s(二,w)一艺艺 ,=Oj=0B,,1(u)尽,1(w)P。 u,we[0,l]上式定义了一张双线性1戈zier曲面。已知四个角点后,S(u,w)=(1一w)(1一u)p00+(r一u)wPol+u(l一w)Plo+“双夕11。 (2)双二次Bezier曲面 当m=n=2时,:(。,w)=艺艺 f=0少=0B、,2(u)Bj,2(w)P、 u,wC[O,1]由此式定义的曲面,其边界曲线及参数坐标曲线均为抛物线。 (3)双三次Bezler曲面 当m=n=3时,s(。,w)=习艺B、,3(u)Bj,3(二)户。矛=OJ=0 u,w〔[0,1]s(u,w)=[Bo,3(u)BI,3(u)BZ,3(u)B3,3(u)〕门l|||!!lee|eeJ切切叨侧阳月陌|旧!陌﹁叫川|圳l刊P P PP 02 12 2232P P PPP P PP 00 1020叨陆11P|lP|净 X其矩阵表示为s(u,、)二“村之B二M万wT式中v=【u3 uZ ul], W=[w3 wZ wl],3一3引”}0J飞︶00︸︸O八JO一一一 一一 风双三次BeZier曲面如图1所示,B:是曲面特征网格16个控制顶点的位置矩阵,其中Poo、P01、P10、Pll是曲面片的角点。B二阵四周的12个控制点定义了四
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条