1) discrete Fourier spectrum

离散傅里叶谱
2) discrete Fourier transform

离散傅里叶变换
1.
Research on definition of discrete Fourier transform;

离散傅里叶变换的定义研究
2.
Characterizing discrete Fourier transform errors in signal processing by inner product;

工程信号处理中离散傅里叶变换的误差
3.
Using the spectrum decomposition technique by discrete Fourier transform in short window a-chieves the object using imaging feature of tuning amplitude in frequency domain to study the regularity of lateral variation in reservoir and fully dig up seismic resolution capability in dominant-high frequencies of seismic data.
采用短时窗离散傅里叶变换的频谱分解技术,实现了在频率域内通过调谐振幅的成像特征来研究储层横向变化规律的目标,最大限度地挖掘了地震资料主频至高频端的地震分辨能力。
3) discrete Fourier transforms

离散傅里叶变换
1.
Based on 2-D discrete Fourier transforms(DFT) of infrared images from water jet and the analyses of its 2-D spatial spectrum,investigations were made on the spatial scales of passive scalars turbulent flow in high pressure water jet fields,which are represented by infrared images.
基于二维离散傅里叶变换及空间频谱分析,对水射流湍流脉动的空间尺度进行了研究,得到了由红外辐射温度表征的被动标量湍流场在对流区、耗散区、惯性子区的特征空间尺度及其时间演化规律。
4) discrete Fourier transform(DFT)

离散傅里叶变换
1.
The integral cycles of signals were truncated by backward searching from the original asynchronous data,and the fundamental component position was obtained by searching the spectrum after discrete Fourier transform(DFT),and at last the amplitudes and phases of all the harmonic components were calculated.
该算法采用逆向搜索在非同步采样数据中截取整周期的采样序列,通过离散傅里叶变换(DFT)得到频谱,搜索频谱幅值得到基波谱线位置,计算基波及各次谐波的幅值和相位。
2.
The receiver calculates the phase of differential signals and discrete Fourier transform(DFT).
在传输突发包前插入一段已知的训练序列,接收端将信号进行差分、求相位后,对其进行离散傅里叶变换(DFT)。
3.
For a given sequence,discrete Fourier transform(DFT) transforms it in to the frequency domain through grouping spectral line,the decomposition is to be implemented.
根据正交分解原理和离散傅里叶变换的物理意义,提出了一种分析滤波器组具有理想特性的信号分解与重构新方法(Discrete Fourier transform subband decomposition,DFTSD)。
5) discrete Fourier transform-spread(DFT-S)

离散傅里叶扩频
6) DFT

离散傅里叶变换
1.
An Algorithm for Frequency Measurement Based on DFT;

一种基于离散傅里叶变换的频率测量算法
2.
Split Radix Algorithm for SDFT;

移位离散傅里叶变换的分裂基算法
3.
Application of DFT in SAW Filter Diffraction Compensation;

离散傅里叶变换在SAW滤波器衍射补偿中的应用
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条