说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 共形不变度量
1)  conformal invariant metric
共形不变度量
2)  conformal invariant
共形不变量
1.
Using this theorem,(21 1) 1n r∫Mσr? σ r+ σ r ? + dM in case r = 2 is proved that it is not a conformal invariant.
文章给出了高阶共形几何中共性平均曲率的一个定理,特别地用这个定理判定了∫M(σr2?σr+1σr?1)rn+1dM在r=2时不是一个共形不变量。
2.
So important conformal invariants of submani folds of any Riemanian manifold are obtained.
关于欧氏空间的子流形共形不变量 ,得到了任意Riemann流形的子流形共形不变量 。
3.
For an even dimensional compact oriented conformal real manifold without boundary, Connes has constructed a canonical Fredholm module and defined a conformal invariant by the Wodzicki residue.
对于偶数维、紧致、可定向、没有边界的共形实流形,Connes构造了一个标准的Fredholm模,并用Wodzicki留数定义了一个共形不变量。
3)  Conformal invariants
共形不变量变
4)  Conformal metric
共形度量
1.
In this paper we estimate the Gaussian curvature of a conformal metric on a hypersurface with constant mean curvature in the space form N +1(C).
本文估计了空间形式Nn+1(c)中常平均曲率超曲面上共形度量的曲率上界,并用其研究了Nn+1(c)中常平均曲率超曲面的强稳定性。
2.
It discussed the hyperbolic convexity of the conformal metric of Nehari class,and obtained a sufficient condition that the conformal metric of the image of unit disc under Nehari function is hyperbolically convex.
讨论了Nehari函数族及其所诱导的共形度量的双曲凸性,得到了单位圆盘在Nehari函数作用下的像区域的共形度量为双曲凸函数的条件。
5)  conformal invariance
共形不变性
1.
Firstly,the definition of conformal invariance and determining equation for the Lagrange system are provided.
研究Lagrange系统Lie点变换下的共形不变性与守恒量,给出Lagrange系统的共形不变性定义和确定方程,讨论系统共形不变性与Lie对称性的关系,得到在无限小单参数点变换群作用下系统共形不变性同时是Lie对称性的充要条件,导出系统相应的守恒量,并给出应用算例。
2.
tarting from the conformal invariance of the singUlarity manifoldequation of the (1+1)-dimensional KdV equation, the (1+1)-dimensional sinh-Gordonequation was re-obtained.
首先利用1+1维KdV方程的奇性流形方程的共形不变性,重新给出了1+1维的sinh-Gordon万程。
3.
This means that conformal invariance is preserved in such cases.
在热力学极限下,单个Fermion能量与宇称算符的奇偶性无关,并证明了当临界参量构成可公度组态时,能谱具有塔状结构,因而在此情况下共形不变性被保持。
6)  conjugacy invariant
共轭不变量
补充资料:共形不变度量


共形不变度量
conformally - invariant metric

  共形不变度t[翻目加m目,y一in俪叨t me‘c;明咖,M”。-...p...T.皿MeTP.“,」.Riemann曲面R一七的 一个规则,它使把一个参数邻域U仁R映射到闭复平面亡中的局部参数::u一〔对应于一个实值函数 p::z(U)、{0+艾]使得对所有的局部参数:l:。一C及二::UZ‘c,当交U.门称非空时,有以下关系式: 气俩切))_{dz,切){__,,八,、 于分炭众.二卜觉资令}(vP二U!自U办 Pz.伪切”{deZ卯{\-一‘”一‘尸其中城U)是在:下U在C中的象,一个共形不变度量通常记为P伺}由!,它反映了关犷局部参数:的选取的上述不变性. 每个线性微分又诊)d:(或二次徽分(quadratic dif-ferential)C(:)d:’)可诱导一个共形不变度量}又仕)l·!d:{(或)Q少)}’勺d刘).作为定义共形不变量的一个很一般的形式,共形不变度量的概念使人们能够导出R上曲线长度的概念和极值长度及曲线族的模的概念一〔见极值度,方法(extremal metrie,methodof)和【l」).共形不变度量的定义可移植到任意维的Riemann簇一上.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条