1) MAGLEV system
磁浮系统
1.
The influence of delay on the stability of the nonlinear maglev system with delayed velocity feedback control was investigated.
运用规范型法和中心流形法解析地确定出表征时滞磁浮系统中Hopf分岔方向、周期解的稳定性及周期变化的特征量。
2) magnetic levitation system
磁悬浮系统
1.
Hamiltonian modeling and passive control of magnetic levitation system;
磁悬浮系统的哈密顿建模和无源控制
2.
By black box modeling,we compare dynamic characteristics of High Temperature Superconducting (HTS) electromagnet based magnetic levitation system with that of general electromagnet based magnetic levitation system when electromagnets are stably sus- pended.
本文从黑箱建模的角度出发,分析高温超导磁悬浮系统和常导磁悬浮系统在稳态悬浮时的动态特性。
3) magnetic suspension system
磁悬浮系统
1.
Based on the fundamental theory of dynamics and electromagnetics,the mathematic model of a single-magnet magnetic suspension system of the EMS Maglev was proposed with Lagrange equation in MATLAB/Simulink enviroment.
在MATLAB/Simulink环境下,对电磁型(EMS)磁浮列车,利用Lagrange方程,结合动力学和电磁学基本理论,建立了单磁铁磁悬浮系统的数学模型,给出了采用线性二次最优控制策略的系统仿真模型,分析了影响该系统动态性能的主要因素。
2.
The mathematical model of a single-magnet magnetic suspension system is presented on the basis of analyzing the structural characteristics of a magnetic suspension system of the electric magnetic system(EMS) MAGLEV.
在分析电磁型(EM S)磁悬浮列车悬浮系统结构特性的基础上,建立了单磁铁磁悬浮系统的数学模型。
3.
The characteristic and design method of passive magnetic bearing were introduced in the article, then its important application in magnetic suspension system is introduced.
论述了被动磁力轴承的特点和设计方法,介绍了其在磁悬浮系统中的重要作用。
4) maglev system
磁悬浮系统
1.
Self-adaptive control method for maglev system;
磁悬浮系统自适应控制方法研究
2.
On this foundation,the authors made academic and emulational analysis on the Maglev system by the space-state control ways and got conclusion from the analysis that the space-state control system could get effective and accurate control for the Maglev system.
从增强悬浮稳定性的目的出发,根据单电磁铁的物理模型建立了磁悬浮系统在平衡点的数学模型,并且为状态控制器选择了恰当的状态模型。
5) maglev train system
磁悬浮列车系统
1.
Vehicle-coupling-rail vibration is ubiquitous in maglev train system.
为了解决磁悬浮列车系统中普遍存在而难以解决的车轨耦合振动问题,以磁悬浮列车的车辆-轨道模型为研究对象,分析在普通反馈控制规律作用下容易产生车轨耦合振动的原因,提出并实现了在普通反馈控制规律的基础上,引入电磁悬浮间隙的微分信号来抑制车轨耦合振动的方法。
补充资料:磁浮铁路
磁浮铁路
transrapid
页82图) 按磁浮车辆所用的电滋铁可分为常导吸引型(EMS)及超导排斥型(E Ds)两大类。磁浮铁路的导轨结构有反T型及U型两种(见图1),一般采用钢筋混凝土制成,其上铺设有导轨及悬浮、导向用线圈等。6口以】8卜工r‘‘巨-。;飞代憋卿U里、r,、件r,,OCO(里t飞T犷百反/﹄瓜 图1导轨结构 (a)反T型,(b)U型 常导吸引型磁浮铁路利用磁铁吸钢板的原理运行,见图2(a)。这类磁浮铁路在磁浮列车车体底部安装电磁铁1,两侧倒转向上的顶部安装电磁铁2,在T形导轨的上方和伸份部分下方分别装设反作用板和感应钢板。当电磁铁1通电后,对感应钢板的吸引力和车辆重力平衡时,使车辆悬浮于导轨面上;当电流通过电磁铁2时,反作用板产生涡流,利用两者的拉力使车辆前进。电班铁反作用板感应钢板龟住铁2推进兼导向线日┌────┐│。必酬i │└────┘悬浮线.(b)翅导线圈 图2磁浮列车原理图(a)常导吸引型.(b)超导排斤型运行的车辆用直线异步电动机驱动。这种类型磁浮铁路适用于高速干线或中、低速的城市及近郊运摘,成本较低。日本的HSST型及德国TR型快速动车均属于常导吸引型。 超导排斥型磁浮铁路利用磁铁同极相斥原理运行,见图2(b).这类磁浮铁路在磁浮列车的车体上安装有超导磁铁,轨道侧安装有悬浮线圈、推进兼导向线圈。当直线电动机推动车辆运行时,超导线圈内通电后Clfut旧{U磁浮铁路(t ransrapid)利用电磁感应原理,以直线电动机驱动车辆,运行时车体悬浮或吸浮于导轨上面,并与之保持一定间隙的铁路。磁浮铁路所用的车辆通常称为磁浮列车。磁浮列车悬浮或吸浮于铁路导轨上,无轮轨摩擦,不受戮着条件限制,具有高速(时速可达500 km/h以上),无公害(无环境污染),轮轨间无冲击振动,安全稳定,舒适性好,检修量小,没有俐轨、车轮、接触线、受流器等磨损,可完全自动控制等特点,是一种新式交通工具.(参见彩图插页第32成为超导磁铁,由于磁感应作用,使悬浮线圈及左右的导向线圈内交链磁通变化,因而产生浮力或左右导向的复原力,维持磁浮车辆正常悬浮运行。超导排斥型磁浮铁路的磁浮列车采用直线同步电动机驭动。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条