1) contrative mapping

压縮映射
2) contraction mapping

压缩映射
1.
A discussion on the interior and outer measures of sets under contraction mappings;

对压缩映射下集合内外测度的探讨
2.
The existence of almost-periodic solution and its stability are explored based on contraction mapping principle.
主要研究了3维Lotka-volterra生态概周期系统,利用压缩映射原理得到正概周期解的存在性和稳定性,推广了某些已知结果。
3.
Solution to (LEG) Linear Equation Group problemis studied in this paper, and a non-linear iterativealgorithmis deduced by using contraction mapping theorem, fixed point theory and relatedmatrix properties.
利用压缩映射定理、不动点原理及矩阵的相关性质 ,对求解一般线性方程组问题进行了研究 ,导出了一种求解线性方程组的非线性迭代算法。
3) contractive mapping

压缩映射
1.
This paper applies contractive mapping genetic algorithm to learning of multiplayer feedforward neural network.
将压缩映射遗传算法应用于 BP神经网络的数学模型 ,构建一种新型的压缩映射神经网络 ,这种神经网络收敛于全局最优解。
2.
The contractive mappings in the vector space,which is with vector norm are defined by a map on the vector lattice.
在具有向量值范数的实向量空间上,通过引入一个定义在向量格上的特殊映射来讨论压缩映射,并证明相应的不动点定理。
3.
In this paper we study the contractive mappings in vector space with vector norm by a map Φ defined on a order-complete vector lattice and obtain a fixed point theorem.
在具有向量值范数的实向量空间上,利用一个定义在序完备向量格上的特殊映射Φ来引入压缩映射,并证明相应的压缩映射的不动点定理。
4) compression mapping

压缩映射
1.
Some Banach Fixed point theories in common use,that is,compression mapping theories are introduced in this paper.
本文介绍了常用的Banach不动点定理即压缩映射原理,重点讨论了它在方程中有关解存在问题应用实例,从而阐述了Banach不动点定理的理论价值和实际应用。
2.
On the basis of the original theorem, this article gets two fixed -point theorems of compression mapping by relaxing the condition of compression and according to the character of compact distance and space.
本文在原定理的基础上,通过放松压缩条件,并依据紧距离空间的特性,得出了两个压缩映射的不动点定理,使定理适应范围更加广泛,改进了[1]中的结果。
5) pressure mapping

压力映射
6) pressing mapping

压平映射
补充资料:冲击波超压与动压