1) semantic function
语义函数
2) semantic information function
语义信息函数
3) statement function definition
语句函数定义
4) statement function definition statement
语句函数定义语句
5) generalized function
广义函数
1.
The duality property of several kinds of generalized functions;
几种类型广义函数的对偶性
2.
This article using AHP to determine the weighting of index,using generalized function to nondimensionalize the value of index,then calcalute the systematic evaluation index.
采用层次分析法确定准则层和各单项指标的权重,通过广义函数法对各评价指标进行无量纲化来确定单个指标的评价值,最后根据各指标的评价值及其权重确定城市交通适应性评价值。
3.
First, by comparing with the definition of ordinary function, the definition of the general function and the equality of two generalized functions are introduced.
冲激(偶)函数类性质历来是《信号与系统》教学中的难点,也是学生不易理解的内容,为此,教学策略采用"三步走"的方法:首先与普通函数定义方法相比较引出广义函数定义和"两广义函数相等"的概念,继而用高等数学的微积分知识证明冲激(偶)函数类的"抽样"性质,最后以前两者为基础证明冲激偶函数的"筛选"性质。
6) generalized functions
广义函数
1.
The theoretical proof is based on the theory of Schwartz generalized functions.
该文给出了修正的Morley方程在坐标原点具有奇性的基本解的一种构造方法,以及基于Schwartz广义函数理论的证明。
2.
Utilizing perturbation method, stochastic equations are changed to be a series of deterministic equations, In the meantime stochastic boundary conditions become deterministic boundary conditions considering characters of generalized functions.
通过摄动法 ,将随机方程化为一系列确定的方程 ,并同时利用广义函数的性质 ,变相应的随机边界条件为确定的边界条件 ,用确定的有限元离散方法 ,推导了考虑边界形状不确定的结构振动统计特征值的近似表
3.
On the basis of the classical valuation method of generalized functions, the set value of a generalized function has been defined by the equivalent value mode and the uniform convergence method.
在广义函数的经典赋值方法的基础上利用等价方式及一致收敛方法定义了一种广义函数的集
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条