1) conjugate bilinear functional space

共轭双线性泛函空间
3) dual space

共轭空间
1.
The correct weak form of basic equations in elasticity is presented by means of dual space conception and basic theorem in functional analysis.
因此从泛函分析的角度出发,基于共轭空间的概念和泛函分析的基本定理准确地给出了弹性力学基本方程的弱形式;给出了连续介质在位移或物理常数间断面上的条件。
2.
In this paper,we give a new proof of the property in dual spaces.

提供共轭空间一性质较代数化的证明 ,该性质常用于算子代数的同调与上同调理论中 。
3.
Taking the spaces of conergent sequences c and the space of null sequences c0 for example,discuss the relations between a Banach space and its dual space,by means of the properties of extrem points of convex set in Banach space.
以收敛数列空间c和收敛于零的数列空间c0为例,应用空间凸集端点性质研究等工具,对Banach空间与其共轭空间的关系做某些探讨。
4) conjugate space

共轭空间
1.
l_(n_m)~p(1<p<∞) space,l_(n_m~△)~p(1<p<∞) space and their conjugate space;

l_(n_m)~p(1<p<∞)空间和l_(n_m~△)~p(1<p<∞)空间及其共轭空间
2.
Its complete space are conjugate space are given,andthe sufficient or neces-sary conditions are obtainedfor a linear operator fromRtoRto be continuous.
证明了赋范线性空间R∞={(an)|an∈R,{an}有界,‖(an)‖=supn≥1nλ|an|},R∞不完备,求出它的完备化空间和共轭空间,并给出该空间上线性算子连续的充分或必要条件。
3.
Using the method of vector sequence space, the geometric properties of Cesaro function space, including conjugate space, Schauder bases, weak sequential completeness, approximation property, Hproperty, Radon Nikodym property, reflexivity, Asplund property and convexity, etc.
用矢值序列空间方法研究Cesaro函数空间的几何性质,其中包括对共轭空间,Schauder基,弱序列完备性,逼近性,H性,RNP,自反性,Asplund性质和凸性质的讨论。
5) bilinear continuous functional

双线性连续泛函
6) Hermitian bilinear functional

Hermitian双线性泛函
补充资料:双线性泛函
双线性泛函
bilinear functional
双线性泛函汇bili~加n成佣目;611月眼如‘亩初.粗..0.即] 从交换环人土的模到K自身(视为K模)的一个双线性映射(billnea:maPPing).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条