1) eigenvector function

特征向量函数
1.
The singular distributed parameter system can be converted to a singular system by using the eigenvector function method.
首次研究了广义分布参数系统的不变性条件,利用特征向量函数法将广义分布参数系统化为一广义系统,证明了它们的不变性条件是等价的,同时也指正了某些文献个别结论和证明。
2) Vectorvalued characteristic function

向量值特征函数
3) Radon Nikodym Property(RNP)

随机向量函数的特征函数
4) eigen-vector function

特征张量函数
5) Characteristics of the energy function

特征能量函数
6) Eigenvector derivative

特征向量导数
1.
Computation of eigenvector derivatives using a shift-system dynamic flexibility;

系统移频动柔度式与特征向量导数
2.
Using matrix iteration methods, the eigenvector derivatives can be iterated directly, solving the singular sensitivity equation can be avoided.
采用矩阵迭代法可以直接迭代计算特征向量导数,避免了对奇异灵敏度方程的求解。
3.
A short review of some methods for calculating eigenvector derivatives is presented in this paper, in which the Fox-method (and improved Fox-method), Nelson-method (and improved Nelson-method), Fox s modal method, and currently advanced complete modal method as well as matrix perturbation method are concerned with.
对特征向量导数计算的若干方法作了简短地评述,同时提出了一种改进模态法。
补充资料:特征值和特征向量
特征值和特征向量 characteristic value and characteristic vector 数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩 :σ(x)=aζ ,则称x是σ的属于a的特征向量 ,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若A是n阶方阵,I是n阶单位矩阵,则称xI-A为A的特征方阵,xI-A的行列式 |xI-A|展开为x的n次多项式 fA(x)=xn-(a11+…+ann)xn-1+…+(-1)n|A|,称为A的特征多项式,它的根称为A的特征值。若λ0是A的一个特征值,则以λ0I-A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)n|A|I=0。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条