1) complete lattice/residuated mapping

完全格/剩余映射
2) completely distributive residuate lattice

完全分配剩余格
3) complete residuated

完全剩余
1.
In this paper,we introduce the concepts of fuzzifying semigroups based on complete residuated lattice valued logic,and discuss the structures and the properties of the subgroups,regular subsemigroups and completely regular subsemigroups.
该文定义了基于完全剩余格值逻辑上的半群的概念。
4) Complete Residuated Lattice-Valued Logic

完全剩余格值逻辑
1.
Fuzzifying Rings and Ideals Based on Complete Residuated Lattice-Valued Logic;

给出基于完全剩余格值逻辑上的不分明化环和理想(格上不分明化环和理想)两个概念,并进一步研究它们的一些基本代数性质;主要得到格上不分明化理想的交、和、积和商仍是格上不分明化理想。
5) complete residuated lattice

完备剩余格
1.
In the present paper, the rules of total implication α-MIFMP, α-MIFMT for fuzzy reasoning in complete residuated lattice are defined, the algorithm formulas of total implication α-MIFMP, α-MIFMT in the residuated lattice have been gained, and we apply the results to Godel logic system, Lukasiewicz logic system, Goguen logic system, and W.
本文在完备剩余格中给出了模糊推理。
6) complete residue system

完全剩余系
补充资料:剩余映射
剩余映射
residuated mapping
剩余映射[re‘山.ted咖娜吨;pe3一月yaju,“oeo,6pa-撰,加e」由偏序集尸到偏序集P‘内的一个保序映射(妇。-toneIT坦pp吨)伞,对其存在尸‘到尸的一个保序映射甲’,使得对所有x〔P,甲‘(价(x)))x和对所有尤‘〔尸‘,甲(甲‘(x‘))簇x‘.如果尸和p‘都是完全格,那么这就等价于对尸的每一个子集A,等式 甲(supA)=s叩q)(A)成立.一个偏序集P到其自身内的剩余映射的集合构成一个半群,并可定义其偏序(见序半群(。rderedSenll一gro叩))为:甲续价,如果对所有x〔P,毋(x)簇砂(x).这个偏序半群的性质同偏序集尸的性质有密切联系(见格(lat石ce)).月.Ac‘叩。KoB撰【补注】在定义中出现的映射甲‘称为伞的剩余(residt任d),它由毋唯一确定.由范畴论借用一个更对称的术语,称伞为左伴随(left adjoint),甲‘为右伴随(巧ghtadjoint),(见伴随函子(adjoint几川ctol)).对于剩余映射的反序类似物见G汕血对应(C透1015co优spondenee),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条