1) quotient topology

商拓扑
1.
The uniformity of elevated quotient topology,elevated weak topology with quotient topology and weak topology on superspace is discussed The sufficient and necessary conditions of continuity for elevated mapping and the relationship of topological entroty between a mapping on the botton of space and elevated mapping on the upper of space.
给出了两种重要拓扑──商拓扑、弱拓扑提升后与超空间下商拓扑、弱拓扑相一致的某些结果。
2) compact quotient topology

紧商拓扑
1.
In this paper,we introduce the concept of compact quotient mapping and compact quotient topology,discuss systematically their basic properties and establish some interesting results.
引进了紧商映射与紧商拓扑的概念,系统地讨论了它们的性质,得到若干有趣的结果。
3) quotient topological group

商拓扑群
4) topological quotient group

拓扑商群
5) quotient topological space

商拓扑空间
1.
Describe the logical relations among mining survey objects using quotient topological space;
用商拓扑空间研究井下测量对象之间的逻辑关系
6) L-fuzzy N-compact quotient topology

LF紧商拓扑
1.
In this paper, it was consisted of two independent main elements:Firstly, L - fuzzyN-compact quotient order-homomorphism and L - fuzzy N-compact quotient topology.
现将两篇文章的内容摘要简述如下:一、LF紧商序同态与LF紧商拓扑良紧性是LF拓扑学中一个重要概念,它是分明拓扑学紧性概念的L -好的推广。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条