1) quasi-parabolic model

准抛物模型
2) parabola model

抛物线模型
1.
The difference between catenary model and parabola model and its influences on the design of ADSS;
悬链线模型与抛物线模型的差异性及其对ADSS设计的影响
2.
The results explain the consistency and difference between the whole growth period of crop moisture parabola model and Jensen′s model of crop growth stages of water in theory,these can provide a reference for optimum distribution about flow of water of irrigation and drainage.
分析结果说明了作物全生育期水分的抛物线模型和作物生育阶段水分的Jensen模型在理论上的一致性和差异性,为灌溉水量的优化分配提供了依据。
3) Parabolic model

抛物线模型
1.
Based on the testing results in laboratory, the stress strain responses of the eco material are simulated by the hyperbolic and parabolic models, and the testing parameters of models are given.
基于生态护坡材料的室内试验成果 ,分别利用双曲线和二次抛物线模型模拟其应力~应变关系 ,并给出了相应的模型试验参数。
2.
The stress-strain relationships of different forest root systems above are simulated by the hyperbolic and parabolic models,and the testing parameters of models are given.
分别利用双曲线和二次抛物线模型模拟上述不同树种根系的应力-应变关系,并给出了相应的模型试验参数。
3.
, the linear model, parabolic model and growth curve model are constructed using the trend extrapolation.
依样本空间和分析对象的不同,运用趋势外推法分别建立了线性模型、抛物线模型、生长曲线模型3种预测外延模型结构。
4) parabolic mild slope equation of wave

抛物型缓坡模型
5) Parabolic equation wave model

抛物型方程模型
6) complete parabolic model

完全抛物线模型
补充资料:抛物型偏微分方程
抛物型偏微分方程 parabolic type,partial differential equation of 偏微分方程的一类。最典型的是热传导方程 ![]() ![]() ![]() 热传导方程初值问题的解可用基本解叠加而成,即 ![]() ![]() ![]() 极值原理:一个内部有热源的传导过程,它的最低温度一定在边界上或初始时刻达到。更强的结论是 :如果t=T时在Ω内某一点达到最低温度 ,则在这个时刻以前(t<T时)u≡常数 ;又:若最低温度在t=T时边界¶Ω上某点P达到,则在这点上 ![]() |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条