1) measurable set funcnon
Jordan-Hahn分解
2) Hahn decomposition
Hahn分解
1.
As a result,Hahn decomposition theorem and Jordan decomposition theorem for T∞-measures(finite or infinite) are obtained.
在对T∞-测度做进一步研究的基础上,得到了(有限或无限)T∞-测度的Hahn分解定理和Jordan分解定理。
2.
Hahn decomposition theorem is very important.
经典测度论中所涉及到的集函数是满足可加性要求的,Hahn分解理论是很重要的定理。
3) Hahn decomposition theorem
Hahn分解定理
4) quasi Jordan decomposition
拟Jordan分解
1.
The principle fundamentals of the quasi Jordan decomposition of a matrix and a program of obtaining the invariant factors and the elemantary divisor structure of a rational matrix are given in this paper.
本文给出矩阵拟Jordan分解的一般原理以及求有理矩阵的不变因子和初等因子结构的种源程序。
5) Jordan-type decomposition
Jordan型分解
6) Jordan decomposition
Jordan分解
1.
As a result,Hahn decomposition theorem and Jordan decomposition theorem for T∞-measures(finite or infinite) are obtained.
在对T∞-测度做进一步研究的基础上,得到了(有限或无限)T∞-测度的Hahn分解定理和Jordan分解定理。
2.
The relations of the properties of the square matrices A,B with ones of their tensor product AB are investigated by means of the Jordan decomposition of square matrices and flip matrix.
利用方阵的Jordan分解与翻转矩阵等技巧,给出方阵A、B及其张量积AB性质间的关系。
3.
In 1991, Butnariu and Klement put forward an open problem as follows:Do there exist for finite T-measures Jordan decompositions by monotone T-measures when T is a Frank t-norm such that T T ?In 2001, Professor Zhang defined the inclusion variations, disjoint variations and chain variations of set functions, and then discussed the properties of the three kinds of variations.
1991年,Butnariu和Klemem在论文《Triangular norm-based measures and their Markov kernel representation》中提出了这样一个公开问题: 当T是一个Frank三角模,并且T≠T_∞时,有限T—测度的Jordan分解是否存在? 2001年,在论文《Some properties of the variations of non-additive set functions Ⅰ》和《Some properties of the variations of non-additive set functions Ⅱ》中,张强教授提出了集函数的内含变差,不交变差和链变差的概念,并详细讨论了这三种变差的性质。
补充资料:Hahn分解
Hahn分解
Hahn decomposition
【补注】亦见J谊由田分解(为记阴deco扣p昭ition).也用Hailn一Jordall分解(Haim一Jo攻场n decomp阅ltion)一词来代替l妞hn分解.恤分解[腼如加,毗犯;xalla卿。‘呷“1‘__ 设艺是集合X的子集族所成的口代数,f是足义仕X上的叮可加集函数,那么Hahn分解是指X可分解为两子集X+与X--之并,X+U工=X,使当M‘艺,MCX+时f(M))0,且当M6艺,MCX--时f(M)(0.一般说来,X的这种分解不是唯一的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条