1) generalized Thullen domain

广义Thullen域
1.
In this paper,it is proved that H 2 r,s (D p,q )=0 for r+s≠2,here D p,q ={(z 1,z 2)∈C 2:z 1 2/p +z 2 2/q <1} (p,q>0) are generalized Thullen domains in C 2.
证明了C2 中的广义Thullen域Dp ,q ={ (z1,z2 ) ∈C2 :z12 /p +z2 2 /q <1} ,其中p ,q >0 ,H2 r ,s(Dp ,q) =0 ,对 r +s≠ 2 。
3) Generalizing neighborhood unions

广义邻域并
4) generalized pivotal

广义置信域
5) generalized extension field

广义可拓域
1.
he concepts of the generalized extension field and the generalized stable fieldare established; their practical background and the relationship beween theextension field and the stable field are discussed; and their basic properties arestudied.
给出了广义可拓域和广义稳定域的概念,讨论了它们的实际背景以及与可拓域、稳定域的关系,并获得了它们的若干性质。
6) generalized stable field

广义稳定域
1.
he concepts of the generalized extension field and the generalized stable fieldare established; their practical background and the relationship beween theextension field and the stable field are discussed; and their basic properties arestudied.
给出了广义可拓域和广义稳定域的概念,讨论了它们的实际背景以及与可拓域、稳定域的关系,并获得了它们的若干性质。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条