1) integrated operational amplifier feedback constant current source

集成运放反馈型恒流源
2) integrated operational amplifier constant current source

集成运放恒流源
3) current feedback amplifiers (CFAs)

电流反馈型运算放大器
1.
The basic principle of current feedback amplifiers (CFAs) and application;

电流反馈型运算放大器及应用
4) current-feedback operational amplifier

电流反馈运算放大器
1.
The scheme of broad bandwidth signal modulation circuit with four-quadrant multiplier and current-feedback operational amplifier is presented and realized, which has been sucessfully used in two kinds of high performance ARB.
分析了信号调理电路的原理及其高频特性,提出了用四象限乘法器和电流反馈运算放大器实现宽带信号调理的方案,并成功地应用于两种高性能任意波发生器中。
5) CFOA

电流反馈运算放大器
1.
When driving a capacitive load of 20pF,simulation results of the proposed CFOA with HSPICE show a:87dB open loop gain,23.
5μm CMOS工艺,通过引入电流模式的缓冲级输入输出结构而设计了一种性能较高的CMOS电流反馈运算放大器。
2.
The paper presents a novel current-feedback operational amplifier(CFOA) with ultra low power based on a second-generation negative current conveyor.
设计了一种新型的基于第二代电流传输器CCⅡ-的超低功耗电流反馈运算放大器,并采用TSMC0。
3.
In recent years,the current feedback operational amplifier(CFOA)has gained the attention of researchers in the field of analog and mixed-signal integrated circuit (IC)applications for their high potential bandwidth,high slew rate,and near gain-independent bandwidth.
近年来,电流反馈运算放大器(CFOA)因为其潜在的宽带、高转换速率和增益几乎与带宽独立的调节性能引起了模拟和混合信号集成电路应用领域专家学者的极大关注。
6) Current feedback operational amplifier

电流反馈运算放大器
1.
This article adopts the CMOS current feedback operational amplifier to be realized the high-order all-pole filter,and accomplishes the computer simulation of MOS transistor level towards the concrete circuit,which indicates that the circuit scheme put forward is feasible and the function is fine at last.
采用CMOS电流反馈运算放大器实现高阶全极点滤波器,面向具体电路完成了MOS管级的计算机仿真,结果表明所提出的电路方案可行、性能优良。
2.
The paper studies the theoretics and synthesis of current feedback operational amplifier (also called transirapedance operational amplifier, for short CFOA) and CFOA-C filter circuit, introduces the present state of the research of analogy integrated circuit.
本文研究电流反馈运算放大器(又称跨阻运算放大器,简称CFOA)及其滤波器电路的原理和设计。
补充资料:增强型与耗尽型金属-氧化物-半导体集成电路
耗尽型MOS晶体管用作负载管,增强型MOS晶体管用作驱动管组成反相器(图1),并以这种反相器作为基本单元而构成各种集成电路。这种集成电路简称E/D MOS。
特点 E/D MOS电路的速度快,电压摆幅大,集成密度高。MOS反相器的每级门延迟取决于负载电容的充电和放电速度。在负载电容一定的条件下,充电电流的大小是决定反相器延迟的关键因素。各种MOS反相器的负载特性见图2。在E/D MOS反相器中,作为负载的耗尽型管一般工作在共栅源(栅与源相连,其电压uGS=0)状态。把耗尽型MOS晶体管的输出特性IDS~VDS曲线,沿纵轴翻转180o,取出其中uGS=0的曲线,即可得到E/D MOS反相器的负载(图2)。E/D MOS反相器具有接近于理想恒流源的负载特性。与E/E MOS反相器(负载管和驱动管都用增强型MOS晶体管的)相比,同样尺寸的理想E/D MOS电路,可以获得更高的工作速度,其门延迟(tpd)可减少至十几分之一。由于耗尽型管存在衬偏调制效应,E/D MOS反相器的负载特性变差,tpd的实际改进只有1/5~1/8。此外,由于E/DMOS反相器输出电压uo没有阈电压损失,最高输出电压uo可达到电源电压UDD=5伏(图1)。因此,比饱和负载E/E MOS反相器的电压摆幅大。另一方面,由于E/D MOS反相器的负载特性较好,为了达到同样的门延迟,E/D MOS反相器的负载管可以选用较小的宽长比,从而占用较少的面积;为了得到相同的低电平,E/D MOS反相器的βR值也比E/E MOS反相器的βR值小些。与E/E MOS电路相比,E/D MOS电路的集成密度约可提高一倍。
结构与工艺 只有合理的版图设计和采用先进的工艺技术,才能真正实现E/D MOS电路的优点。图3是E/D MOS反相器的剖面示意图。E/DMOS电路的基本工艺与 NMOS电路类同(见N沟道金属-氧化物-半导体集成电路)。其中耗尽管的初始沟道,是通过砷或磷的离子注入而形成的。为了使负载管的栅与源短接,在生长多晶硅之前,需要进行一次"埋孔"光刻。先进的 E/D MOS的结构和工艺有以下特点。①准等平面:引用氮化硅层实现选择性氧化,降低了场氧化层的台阶;②N沟道器件:电子迁移率约为空穴迁移率的三倍,因而N沟道器件有利于提高导电因子;③硅栅自对准:用多晶硅作栅,可多一层布线。结合自对准,可使栅、源和栅、漏寄生电容大大减小。
采用准等平面、 N沟道硅栅自对准技术制作的 E/D MOS电路,已达到tpd≈4纳秒,功耗Pd≈1毫瓦,集成密度约为300门/毫米2。E/D MOS电路和CMOS电路是MOS大规模集成电路中比较好的电路形式。CMOS电路(见互补金属-氧化物-半导体集成电路)比E/D MOS电路的功耗约低两个数量级,而E/D MOS电路的集成密度却比CMOS电路约高一倍,其工艺也比CMOS电路简单。E/D MOS电路和CMOS电路技术相结合,是超大规模集成电路技术发展的主要方向。
特点 E/D MOS电路的速度快,电压摆幅大,集成密度高。MOS反相器的每级门延迟取决于负载电容的充电和放电速度。在负载电容一定的条件下,充电电流的大小是决定反相器延迟的关键因素。各种MOS反相器的负载特性见图2。在E/D MOS反相器中,作为负载的耗尽型管一般工作在共栅源(栅与源相连,其电压uGS=0)状态。把耗尽型MOS晶体管的输出特性IDS~VDS曲线,沿纵轴翻转180o,取出其中uGS=0的曲线,即可得到E/D MOS反相器的负载(图2)。E/D MOS反相器具有接近于理想恒流源的负载特性。与E/E MOS反相器(负载管和驱动管都用增强型MOS晶体管的)相比,同样尺寸的理想E/D MOS电路,可以获得更高的工作速度,其门延迟(tpd)可减少至十几分之一。由于耗尽型管存在衬偏调制效应,E/D MOS反相器的负载特性变差,tpd的实际改进只有1/5~1/8。此外,由于E/DMOS反相器输出电压uo没有阈电压损失,最高输出电压uo可达到电源电压UDD=5伏(图1)。因此,比饱和负载E/E MOS反相器的电压摆幅大。另一方面,由于E/D MOS反相器的负载特性较好,为了达到同样的门延迟,E/D MOS反相器的负载管可以选用较小的宽长比,从而占用较少的面积;为了得到相同的低电平,E/D MOS反相器的βR值也比E/E MOS反相器的βR值小些。与E/E MOS电路相比,E/D MOS电路的集成密度约可提高一倍。
结构与工艺 只有合理的版图设计和采用先进的工艺技术,才能真正实现E/D MOS电路的优点。图3是E/D MOS反相器的剖面示意图。E/DMOS电路的基本工艺与 NMOS电路类同(见N沟道金属-氧化物-半导体集成电路)。其中耗尽管的初始沟道,是通过砷或磷的离子注入而形成的。为了使负载管的栅与源短接,在生长多晶硅之前,需要进行一次"埋孔"光刻。先进的 E/D MOS的结构和工艺有以下特点。①准等平面:引用氮化硅层实现选择性氧化,降低了场氧化层的台阶;②N沟道器件:电子迁移率约为空穴迁移率的三倍,因而N沟道器件有利于提高导电因子;③硅栅自对准:用多晶硅作栅,可多一层布线。结合自对准,可使栅、源和栅、漏寄生电容大大减小。
采用准等平面、 N沟道硅栅自对准技术制作的 E/D MOS电路,已达到tpd≈4纳秒,功耗Pd≈1毫瓦,集成密度约为300门/毫米2。E/D MOS电路和CMOS电路是MOS大规模集成电路中比较好的电路形式。CMOS电路(见互补金属-氧化物-半导体集成电路)比E/D MOS电路的功耗约低两个数量级,而E/D MOS电路的集成密度却比CMOS电路约高一倍,其工艺也比CMOS电路简单。E/D MOS电路和CMOS电路技术相结合,是超大规模集成电路技术发展的主要方向。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条