说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 协调图
1)  harmonious graph
协调图
2)  strongly harmonious graph
强协调图
1.
In this paper we prove that graph P~2_n, B(3,2,k) and B(4,3,k) are strongly harmonious graphs, and the strongly harmonious labelings are given.
证明了图Pkn和B(3,2,k),B(4,3,k)都是强协调图,并给出了它们的强协调标号。
3)  strongly harmonious graphs
强协调图
1.
In this paper,we give strongly harmonious labeling of several windmill graphs,and prove that they are all strongly harmonious graphs.
本文给出了若干个风车图的强协调值 ,从而证明它们都是强协调
4)  coordinate chart
协调图表
1.
Considered that the design of the coordinate chart is related to many factors such as design drawings, production patterns, technology level and so on, it is difficult and cumbersome to design the coordinate chart.
飞机协调图表的设计涉及到产品图纸、生产形式、工艺水平等诸多因素的影响,它的设计工作困难而且繁琐。
5)  odd strong harmonious graph
奇强协调图
1.
If there exist a mapping f:V→{0,1,2,…,2|E|-1} Satisfied 1) u,v∈V,if u≠v,then f(u)≠f(v);2) e1,e2∈E,if e1≠e2,then g(e1)≠g(e2),here g(e)=f(u)+f(v),e=uv;3) {g(e)|e∈E }={1,3,5,…,2|E|-1},then G is called odd strong harmonious graph and f is called odd strong harmonious labeling of G.
对简单图G=〈V,E〉,如果存在一个映射f:V→{0,1,2,…,2 E-1}满足1)对任意的u,v∈V,若u≠v,则f(u)≠f(v);2)对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=f(u)+f(v),e=uv;3){g(e)e∈E}={1,3,5,…,2 E-1},则称G为奇强协调图,f称为G的奇强协调标号。
6)  Coordination charts
互换协调图表
补充资料:图的减缩图(或称图子式)


图的减缩图(或称图子式)
minor of a graph

图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条