1) separating hyper surface

分类超曲面
1.
(2) The concept of separating hyper surface has been defined.

为了解决这个问题 ,该文讨论了以下问题 :( 1)提出了一种通用的基于超曲面的直接分类方法 ,它是基于Jordan曲线定理 ,根据围绕数的奇偶进行分类判断的一种新算法 ;( 2 )提出了分类超曲面的概念 ,设计出超曲面的构造方法及基于Jordan定理的分类算法 ;( 3)对双螺旋等问题的分类实验结果说明 :分类超曲面可以有效地解决在有限区域分布很复杂的海量的非线性数据分类问题 ,并能够提高分类效率和准确率 。
2) classifying method based hyper surface

基于超曲面的分类方法
3) space-like hypersurface

类空超曲面
1.
Complete space-like hypersurfaces with constant mean curvature in locally symmetric Lorentz spaces
局部对称Lorentz空间中具有常平均曲率的完备类空超曲面
2.
Let Ln+11 be a locally symmetric Lorentzian manflold with sectional curvature KL satisfying the condition b2<a≤KL≤b and M be an complete space-like hypersurface with constant mean curvature H in Ln+11,the square of the norm of the second fundamental form of M is denoted by S,λ1,λ2,…,λn are the principal curvatures at point x of M.
3.
In this paper,we study complete space-like hypersurfaces with constant normal scalar curvature in a locally symmetric Lorentz space satisfying some curvature conditions.
讨论了在局部对称Lorentz空间中的具有常标准数量曲率的满足一定曲率条件的完备类空超曲面,利用Cheng S Y和Yau S T介绍的自伴随算子L1,得到了一个分类定理。
4) spacelike hypersurface

类空超曲面
1.
Semi-symmetric spacelike hypersurfaces in De Sitter space;

De Sitter空间中半对称的类空超曲面
2.
The uniqueness theorem of spacelike hypersurface in multi-warped spacetimes and its applications;
多重扭曲时空中类空超曲面的唯一性定理及其应用
3.
On the volume and Gauss map of spacelike hypersurfaces in generalized Robertson-Walker sapcetimes
广义Robertson-Walker时空中类空超曲面的体积与Gauss映照
5) space-like hypersurfaces

类空超曲面
1.
Compact space-like hypersurfaces with constant scalar curvaturein locally symmetric de Sitter space;
局部对称de Sitter空间中的紧致类空超曲面
2.
Complete space-like hypersurfaces with constant scalar curvature in a De Sitter space;

De Sitter空间中具常数量曲率的完备类空超曲面
3.
The resarch studies the space-like hypersurfaces with constant square of length of second fundamental form in locally symmetric Lorentz spaces,Some sufficient conditions for the hypersurfaces to be totally umbilical are obtained.
研究局部对称Lorentz空间中第二基本形式模长平方是常数的类空超曲面,获得了这类超曲面是全脐的若干充分条件。
6) spacelike hypersurfaces

类空超曲面
1.
In this paper,we show that the only complete spacelike hypersurfaces with constant mean curvature in Lorentz-Minkowski space which are bounded be- tween two concentric hyperbolic cylinders are the hyperbolic cylinders,i.
对于常高阶平均曲率的情况,如果截曲率有下界,那么介于两个同心伪球面之间的完备类空超曲面必为伪球面。
补充资料:Riemann曲面的分类
Riemann曲面的分类
Riemann surfaces, classification of
所刻画;这些关系同样不依赖于极点的选取. 设R是开Ri~曲面,{△,}九,是由R内的闭域△,构成的所谓定义序列(de上诵ng sequence)即满足下列条件的序列:l)△,的边界是R内的一条简单闭曲线;2)△,+.C=△,,,=1,2,一;3)自孔:△,=中,即△,在R内非紧.两个定义序列王△,圣和{△;}称为等价的,如果对每个,,存在”和m,使得△。C△,,△。C=么,.定义序列的等价类称为R的边界元(boulldarye】。rr吧nt),而所有边界元的集合看作一个拓扑空间,形成R的理想边界(ideal boUn山ry)r.例如,单位圆盘D的理想边界由一个边界元构成.注意:开Rielr冶nn曲面R的Green函数,不像双曲有限Rierr以nn曲面情形,不一定在理想边界r的所有元素处都等于零.类才。也可刻画为具有容量为零的理想边界的Rien必nn曲面的类,或简短地刻画为具有零边界的Ri~曲面的类.如果R诺夕。,则场n,_二c,=c>0称为理想边界的容量.Riell迢nll曲面R是否存在Green函数以及R上别的函数类的规模,首先取决于这一点以及理想边界涉及所提函数类自身的其他更精致的特征. 斑日比以nn曲面R上的主函数类(pnnciPal丘Inctionelass)砰如下: AB—R上有界单值解析函数类; Al〕—R上具有有限众ri山let积分(压ric比tin-tegml) -一ffi‘、,卜, D,(f)=_川上兴一}dxd夕(:=x+i夕) 一:、J,?}d:}一‘的单值解析函数w=f(:)的类; HP,HB和Hl)—分别为正的、有界的和具有有限Diric比t积分的R上单值调和函数的类.这些类还可以结合起来;例如,ABD是D上具有有限Diric扮et积分的有界单值解析函数的类.对于R的相应的类沙。,已建立下述严格包含关系和相等关系: 产GC刁即C么IBC沙ABC岁ABD=夕^D· 产”日C=岁“DC岁AD,岁湘。二沙H。·对于平面中的区域R,这些关系可以简化: 砂G=乙柳=么祀二代lD, 刁ABC尸ABD二产AD. R上单值解析函数、=f(:)的Hardy类(Hardyclass)AH,(0
1时是双曲型的;这样,类型问题的重要性主要是对开侧en笼山11曲面的.至于任意(不一定单连通)又err必nn曲面R的情形,其类型与其万有覆叠曲面(见万有班亚(uruver-sal covering))R的类型相同,而R总是单连通的. 对于单连通有限Rierr以川1曲面R,寻求R到单位圆盘D上的共形映射问题等价于寻求对于R的G找笼n函数G(P,尸。)问题,即求出在极点夕。任R(:=州P)是p。的一个邻域内的参数,:。=伞(p。”处具有形如in(l/}:一:。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条