1) immunized neural network identification

免疫神经网络辨识
2) immune neural network

免疫神经网络
1.
Application of immune neural network for fault diagnosis;

免疫神经网络在故障诊断中的应用
2.
Forecast of coalmine gas concentration based on the immune neural network model;

基于免疫神经网络模型的瓦斯浓度智能预测
3.
The immune algorithm was combined with neural network,and a new type of harmonic current detection method was proposed in power network based on immune neural network.
将免疫算法与神经网络结合起来提出了一种新型的基于免疫神经网络的电网谐波电流检测方法,通过仿真实验证了该方法具有学习收敛速度快、精度高的特点,能实时地检测出电网中的谐波电流。
3) Neuro-immune network

神经免疫网络
4) BP neural network identification

BP神经网络辨识
5) neural network identification

神经网络辨识
1.
The neural network identification model(NNIM) is used to predict future response to potential control signals of the FTGS.
利用神经网络辨识模型(NNIM)预测FTGS对控制信号的反应,并采用优化算法计算来优化未来FTGS性能的控制信号。
2.
Finally, the simulation examples verify the effectiveness of BP network in fuzzy network identification and neural network identification.
通过比较两者的优缺点,分别给出了两种系统的辨识方案,最后通过仿真实例,验证了BP网络在模糊辨识、神经网络辨识中的有效性。
6) neural network identifier

神经网络辨识器
补充资料:免疫网络
机体中连锁发生的一系列自我识别的过程。N.K.耶讷(1972)在F.M.伯内特的克隆选择学说的基础上提出的一个学说。后来,里希特、霍夫曼和户田等人又作了补充。
抗体可变区不仅显示出抗体活性,而且由于有独特型的抗原决定簇,又显示出抗原活性。抗体既能识别抗原,也能被其他细胞克隆识别,从而产生抗独特型的抗体。无论是游离的抗体分子,还是淋巴细胞膜的免疫球蛋白受体,都表现出具有一定特异性的独特型。根据克隆选择学说可以认为在抗原进入体内之前,已经存在识别抗原的细胞克隆,同时也存在识别该细胞独特型的细胞克隆。抗原进入体内后,识别这一抗原的细胞克隆便被活化,并产生大量抗体分子。其独特型又可活化第二个细胞克隆,经活化后的第二个细胞克隆再把第三个细胞克隆活化。当机体对外来抗原产生抗体Ab-1时,机体就产生针对Ab-1独特型的抗体Ab-2,继而产生针对Ab-2独特型的抗体Ab-3。这些依次产生的抗独特型的抗体可与其他抗体的独特型发生交叉反应,从而在体内形成一个复杂的网络。
免疫网络学说能够较好地解释免疫应答和耐受性的产生。例如,低剂量的抗原可刺激机体产生Ab-1,接着又产生Ab-2。由于Ab-2对Ab-1有抑制作用,Ab-1的产生就受到抑制,这就是低剂量的免疫耐受性。如果抗原剂量稍大、又能够产生Ab-3,则Ab-3对Ab-2的独特型有抑制作用,结果使Ab-1解脱抑制而能正常产生,即出现体液免疫应答。如果抗原剂量更大,还能够产生Ab-4,则Ab-3受到抑制,Ab-2得以正常产生;由于Ab-2正常产生,Ab-1就受到抑制,这就出现高剂量的免疫耐受性。抗体与其抗独特型抗体相互影响,依照抗原刺激的强弱和所产生的抗体量来调节抗体的产生。另外,T细胞表面的抗原受体也有此共同的独特型抗原决定簇,所以T细胞也参与调节B细胞抗体的产生。反之,B细胞产生的抗独特型抗体对具有相同独特型的T细胞也发生作用。
免疫网络学说阐明了抗体的产生是由T细胞、B细胞、抗体之间的相互作用和调节所控制的。
抗体可变区不仅显示出抗体活性,而且由于有独特型的抗原决定簇,又显示出抗原活性。抗体既能识别抗原,也能被其他细胞克隆识别,从而产生抗独特型的抗体。无论是游离的抗体分子,还是淋巴细胞膜的免疫球蛋白受体,都表现出具有一定特异性的独特型。根据克隆选择学说可以认为在抗原进入体内之前,已经存在识别抗原的细胞克隆,同时也存在识别该细胞独特型的细胞克隆。抗原进入体内后,识别这一抗原的细胞克隆便被活化,并产生大量抗体分子。其独特型又可活化第二个细胞克隆,经活化后的第二个细胞克隆再把第三个细胞克隆活化。当机体对外来抗原产生抗体Ab-1时,机体就产生针对Ab-1独特型的抗体Ab-2,继而产生针对Ab-2独特型的抗体Ab-3。这些依次产生的抗独特型的抗体可与其他抗体的独特型发生交叉反应,从而在体内形成一个复杂的网络。
免疫网络学说能够较好地解释免疫应答和耐受性的产生。例如,低剂量的抗原可刺激机体产生Ab-1,接着又产生Ab-2。由于Ab-2对Ab-1有抑制作用,Ab-1的产生就受到抑制,这就是低剂量的免疫耐受性。如果抗原剂量稍大、又能够产生Ab-3,则Ab-3对Ab-2的独特型有抑制作用,结果使Ab-1解脱抑制而能正常产生,即出现体液免疫应答。如果抗原剂量更大,还能够产生Ab-4,则Ab-3受到抑制,Ab-2得以正常产生;由于Ab-2正常产生,Ab-1就受到抑制,这就出现高剂量的免疫耐受性。抗体与其抗独特型抗体相互影响,依照抗原刺激的强弱和所产生的抗体量来调节抗体的产生。另外,T细胞表面的抗原受体也有此共同的独特型抗原决定簇,所以T细胞也参与调节B细胞抗体的产生。反之,B细胞产生的抗独特型抗体对具有相同独特型的T细胞也发生作用。
免疫网络学说阐明了抗体的产生是由T细胞、B细胞、抗体之间的相互作用和调节所控制的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条