说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 带半环
1)  band semiring
带半环
1.
By using the concept of band semiring,the concepts of rectangular Clifford ring and rectangular semiring are introduced extending left Clifflrd ring and left semiring.
利用带半环的概念,将左环与左Clifford半环进行推广引入了矩形环与矩形Clifford半环的概念。
2)  semicircular band
半圆环带
3)  Multiplicative band semirings
乘法带半环
1.
Multiplicative band semirings whose additive reducts are semilattice are studied.
研究了加法半群为半格的乘法带半环,利用Green-D关系,得到了加法群为半格的乘法带半环的若干性质,证明了如果半环S的加法半群是半格,则S是乘法带半环当且仅当S是分配格,从而获得关于分配格的一个结构定理。
2.
In order to study the multiplicative band semirings which containing identity element,by studying distributive lattice,this paper obtaines some properties of multiplicative band semirings which containing identity element.
该文研究了一类幂等半环——含有幺元素的乘法带半环;从格与分配格的代数性质出发,得到了含幺乘法带半环的若干性质;证明了若S为含幺半环,则S是乘法带半环当且仅当S是分配格,从而获得了分配格的一个表示定理。
3.
,multiplicative band semirings which additive reducts are semilattice are studied in this paper.
研究了一类可表示为分配格的幂等半环,即加法半群为半格的乘法带半环;通过Green-D关系,得到了加法群为半格的乘法带半环的若干性质;证明了如果半环S的加法半群是半格,则S是乘法带半环当且仅当S是分配格;从而获得分配格结构的一种刻画。
4)  multiplicative band semiring
乘法带半环
1.
To study a class of idempotent semiring,so-called multiplicative band semirings whose additive reduct are semilattices and study multiplicative band semiring whose are rectanular band semirings,the structure theorem is given of multiplicative band semiring with belong to ID-semiring,ID∩■°D=■z∨■z∨D.
研究了加法半群为半格的半环类S+l中的乘法带半环和矩形带半环类BR中的乘法带半环;给出了ID半环中乘法带半环的结构定理,即ID∩。
2.
This paper investigates the multiplicative band semirings whose additive reduct are semilattices,by using the Green-D relation and gets the results of multiplicative band semirings,It proves that the D+-calsses of multiplicative band semirings are bi-rectangular bands.
研究了半格簇中的乘法带半环;利用Green-D关系,给出了乘法带半环的若干性质,证明了乘法带半环的D+-类一定是双矩形带,进一步得到了乘法带半环簇。
5)  normal band semiring
正规带半环
6)  Semiband
半带
1.
Embedding Semigroups into 2-bisimple Semibands;
嵌任意半群入2-双单半带
补充资料:宽禁带半导体(见半导体的能带结构)


宽禁带半导体(见半导体的能带结构)
wide gap semiconductor

  习一’平叼能带结构。‘J~正J“、二二,,Conauctor见半
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条