1) Lα-αc-open cover
L-αcα-开覆盖
2) k-L squared cover
k-L覆盖形
3) open cover
开覆盖
1.
A space is shrinking if and only if it is normal and there is a σ closed rifinement for its any increasing open cover.
拓扑空间的仿紧性质是拓扑空间的重要性质 ,为了讨论拓扑空间的仿紧性质以及仿紧性质的各种推广 ,讨论了拓扑空间的强收缩性质 ,得了如下结果 :拓扑空间是强收缩的充要条件是它是正规的且对它的任一单增开覆盖存在 σ-闭加细 。
2.
If for any increasing open cover of a topology space there is a countable sub cover of it and it is countable meta compactness,it has Lindel o ¨f property.
如果对拓扑空间的任意单增开覆盖 ,都存在可数子覆盖 ,且是可数亚紧的 ,则是 Lindelo¨f的 。
3.
The definitions of pointwise preimage entropies,preimage branch entropy,and preimage relation entropy for nonautonomous discrete dynamical systems given by a sequence of continuous selfmaps of a compact space are given by using open covers.
对紧致拓扑空间上的连续自映射序列应用开覆盖定义了点原像熵、原像分枝熵以及原像关系熵等几类原像熵。
4) strong open covering
强开覆盖
1.
The concept of strong open covering is used to introduce the m compactness in fuzzy topological space.
在模糊拓扑空间中利用强开覆盖的概念引进一个称作 m-紧的紧性定义 ,并研究了它与模糊网的 m-收敛之间的关系 。
5) semi-open cover
半开覆盖
6) weak open covering
弱开覆盖
补充资料:上开
1.元代杂剧,脚色登场,开始表演,略称"上开"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条