1) Optimal parameter selection methods

最优参数选择方法
2) optimization of parameter

最佳参数选择,参数优化
3) parameter selection algorithm

参数选择方法
1.
In order to get optimal SVM parameters,a parameter selection algorithm for support vector machines is given based on good point set based genetic algorithm(GA).
为了获得较好的SVM参数,提出了基于佳点集遗传算法的参数选择方法,利用佳点集遗传算法对遗传算法中的交叉操作进行了重新设计,减少了遗传算法的收敛时间并且提高了遗传算法的精度,从而确保了SVM参数选择的准确性。
4) Optimal parameter selection problem

最优参数选择问题
1.
In this paper,we consider a class of optimal parameter selection problems,where the system dynamics are described by integro-differential equations.
文章考虑了一类积微分系统最优参数选择问题,推导出目标函数的梯度计算公式,把最优参数选择问题当成数学规划问题利用逐步二次规划法(SQP)进行数值求解,并给出一致的算法。
5) parameterized optimization method

参数最优化方法
1.
An introduction is given to the transfonnation of optimal control problem with state inequality constraints,control inequality constraints and tenninal constraints into static nonlinear programming problem with parameterized optimization method, and a new augmented-SWIFT is also presented.
介绍了如何应用参数最优化方法将具有状态变量不等式约束和控制变量不等式约束以及终端等式约束的最优控制问题转化为静态非线性规划问题,并提出了将求解静态约束最优化问题的系贯加权因子法,即SWIFT(SequentialWeight-IncreasingFactorTechnique)法推广为求解动态约束最优化问题的增广SWIFT法。
6) Optimization parameter selection

优化参数选择
补充资料:动力学系统参数寻优
在一组约束条件下,寻找动力学系统的一组参数,使给定的指标达到最优值(极大或极小值)的方法。它广泛应用于系统的分析、综合与设计中。在实际的动力学系统寻优问题中,给出指标的解析式很困难或者给出的解析式很复杂,一般只能针对具体参数,通过仿真来计算系统的指标。为了寻求使指标达到最优值的参数,必须进行多次运行仿真。因此,动力学系统寻优是多次运行仿真的一个重要方面。
动力学系统参数寻优方法的基本步骤是:①给定一组初始参数,并用仿真的方法计算出系统在这一参数下所达到的指标。②按照一定的规则在某一个寻优方向上找到一组新的参数,它和初始参数之间的距离称为寻优步长。新参数必须满足约束条件。③再用仿真的方法计算出系统在新参数下所达到的指标。④判断新参数是否已使指标达到最优值;如果尚未达到,则继续由这组新参数出发再重新寻找,直到使指标达到最优值为止。寻优的效率不仅取决于确定寻优方向和寻优步长的规则,还取决于仿真的效率。
动力学系统参数寻优的算法大多来源于非线性规划的迭代数值解法,如区间消去法、插值法、单纯形法、共轭梯度法等(见非线性规划)。为了解决多极值指标和泛函限制条件的问题,80年代出现了一些新算法,如自适应随机法,它能在寻优过程中自适应地选择寻优步长分布的最优方差,并周期地探测局部最优的寻优步长方差,从而找到改进的新区域,降低落入局部极值的概率。
动力学系统参数寻优方法的基本步骤是:①给定一组初始参数,并用仿真的方法计算出系统在这一参数下所达到的指标。②按照一定的规则在某一个寻优方向上找到一组新的参数,它和初始参数之间的距离称为寻优步长。新参数必须满足约束条件。③再用仿真的方法计算出系统在新参数下所达到的指标。④判断新参数是否已使指标达到最优值;如果尚未达到,则继续由这组新参数出发再重新寻找,直到使指标达到最优值为止。寻优的效率不仅取决于确定寻优方向和寻优步长的规则,还取决于仿真的效率。
动力学系统参数寻优的算法大多来源于非线性规划的迭代数值解法,如区间消去法、插值法、单纯形法、共轭梯度法等(见非线性规划)。为了解决多极值指标和泛函限制条件的问题,80年代出现了一些新算法,如自适应随机法,它能在寻优过程中自适应地选择寻优步长分布的最优方差,并周期地探测局部最优的寻优步长方差,从而找到改进的新区域,降低落入局部极值的概率。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条