1) non-self asymptotically quasi-nonexpansive-type mapping
渐近拟非扩张型非自映射
1.
This paper aims to introduce the concept of non-self asymptotically quasi-nonexpansive-type mappings and to study the iterative sequence(1.
介绍了渐近拟非扩张型非自映射的概念,在Banach空间研究了迭代序列(1。
2) non-self asymptotically nonexpansive mapping
渐近非扩张非自映射
3) Total asymptotically quasi-nonexpansive mappings
全渐近拟非扩张映射
4) asymptotically quasi-nonexpansive type mapping
渐近拟非扩张型映象
1.
The strong convergence of Ishikawa iterative sequences for asymptotically quasi-nonexpansive type mappings;
渐近拟非扩张型映象的Ishikawa迭代序列的强收敛性
2.
In the paper,we obtain some iterative approximation theorems of fixed points for asymptotically quasi-nonexpansive type mapping and asymptotically nonexpansive type mapping with error member in uniformly convex Banach space without the con- dition"for ■ε>0,■n_0∈N_+,■n≥n_0 and ■x∈D,suth that‖T~nx-T~(n+1)x‖<ε.
本文在去掉条件"T在D上一致渐近正则"的情况下,在一致凸Banach空间中给出了几个渐近拟非扩张型映象和渐近非扩张型映象不动点的迭代逼近定理。
3.
This paper studied the iterative approximation problem of fixed points for asymptotically quasi-nonexpansive type mappings with mixed errors in uniformly convex Banach space.
研究了一致凸Banach空间中渐近拟非扩张型映象不动点具混合误差的迭代逼近问题,改进和推广了相关文献的结果。
5) asymptotically quasi-nonexpansive type mappings
渐近拟非扩张型映象
1.
This paper introduces N-step iterative sequence with mixed errors and gives a necessary and sufficient condition for the N-step iterative sequence with mixed errors to converges strongly to a common fixed point of a finite family of generalized asymptotically quasi-nonexpansive type mappings in a general Banach space.
引入具混合误差的N步迭代序列,并在一般的Banach空间上给出了具混合误差的N步迭代序列强收敛于有限个具有公共不动点的广义渐近拟非扩张型映象的一个公共不动点的充分必要条件。
6) K-asymptotically quasi-nonexpansive type mapping
K-渐近拟非扩张型映象
补充资料:拟非其伦
1.谓比拟不当。语本《礼记.曲礼下》:"拟人必于其伦。"
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条