1)  smooth continuous curve
					 
	
					
				
				 
	
					
				光滑连续曲线
				1.
					From an ordinary phenomenon in daily life——how to keep a chair stable,by establishing a mathematical model through mathematical tools to prove the fact,we can work out four-point coplanar theorem in a closed circle of smooth continuous curve space.
						
						本文从日常生活中的一个普通现象——如何放稳一把椅子出发,通过建立数学模型,用数学工具证明了这一事实,并由此得到了定义在圆上的空间闭合光滑连续曲线上四点共面定理。
					
					2)  continuous and derivable
					 
	
					
				
				 
	
					
				连续光滑
				1.
					The analysis calculation method for circular plates subjected to  distribution load which is continuous and derivable and axial symmetry;
						
						圆板承受连续光滑轴对称分布载荷的解析计算方法
					
					4)  smooth curve
					 
	
					
				
				 
	
					
				光滑曲线
				1.
					It also discuss how to create a smooth curve which passes a serial of present point.
					 
					
						
						 
					
						本文分析了把分段三次样条插值的方法应用于足底矫形器局部修型的必要性,详细讨论了如何应用三次参数样条插值把一系列给定的型值点联接成光滑曲线。
					2.
					In order to print out the record as a smooth curve, the data should be fitted or interpolated.
						
						计算机辅助测试所得记录为一系列经滤波的离散采样数据,要把它恢复成不失真的连续光滑曲线打印输出,应对数据进行处理。
					3.
					In like manner, adefinition of smooth curved surface is also proposed.
					 
					
						
						 
					
						本文经过深入讨论、比较,给出了光滑曲线的定义,这一定义在一定程度上克服了一些常用定义的缺陷,弥补其不足,并给出对一般情况的证明,详细地分析了曲线的奇异点,同时文中还给出了光滑曲面的定义。
					
					5)  smoothing curve
					 
	
					
				
				 
	
					
				曲线光滑
				1.
					In the computer geographic mapping,the tension spline interpolation is an effective method to realize the smoothing curve.
						
						它既能保证曲线光滑又能避免曲线相交。
					
					6)  smooth curves
					 
	
					
				
				 
	
					
				光滑曲线
				1.
					that a class of discontinuity points are distributed over limited smooth curves and that bounded bivar function in bounded closed region has the nature of integrability,by the use of the property that a smooth curve s area is zero.
						
						本文主要通过光滑曲线面积为零的特性证明一类间断点只分布在有限条光滑曲线上并且在有界闭区域上有界的二元函数的可积性。
					补充资料:连续冷却转变曲线图
		      见过冷奥氏体转变图。
         
		
		说明:补充资料仅用于学习参考,请勿用于其它任何用途。
	参考词条