1) disjoint union graph

无交并图
1.
This paper defines weak odd strong harmonious labeling and proves that disjoint union graphs ∪ from i=1 to n(m_iC_4~2) are odd graceful and weak odd strong harmony.
定义了次奇强协调标号,并证明无交并图∪ from i=1 to n (m_iC_4~2)是奇优美的和次奇强协调的。
2.
This paper defines weak odd strong harmonious labeling and proves that disjoint union graphs (?)m_iC_1~2 are odd graceful and weak odd strong harmony.
定义了次奇强协调标号,并证明无交并图■m_i C_4~2是奇优美的和次奇强协调的。
2) non-interactive three-circle graphs

无交三圈图
3) graph with non-interactive bicycle

无交双圈图
1.
The determinants of the adjacency matrices of a graph with one cycle and a graph with non-interactive bicycle are considered in this paper.
本文给出了单圈图及无交双圈图的邻接矩阵的行列式分类。
2.
The adjacency matrix of a graph with non-interactive bicycle is singular if and only if G has cycle of order 4m(m∈N), or G has perfect matching and G-V(c 1) and G-V(c 2) both have no perfect matching and G has cycles of order 4k 1+1 and 4e 1+1 (k 1, e 1∈N), or G and G-V(c 1) and G-V(c 2) and G-V(c 1)-V(c 2) all have no perfect matching.
一个无交双圈图G的邻接矩阵是奇异的当且仅当G含有 4m(m ∈N)阶圈 ,或G含有完美匹配和G-V(c1) ,G-V(c2 )均含有完美匹配且G中含有 4k1+3与 4e1+1(k1,e1∈N)阶圈 ,或G、G -V(c1)、G -V(c2 )、G -V(c1) -V(c2 )均无完美匹配 。
4) We are not on visiting terms.

我等并无交情。
5) tourism traffic undigraph

旅游交通无向图
6) algorithm for labeling graphs/disjoint union

图标号算法/不相交并
补充资料:图的减缩图(或称图子式)
图的减缩图(或称图子式)
minor of a graph
图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条